![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
Mirrors > Home > MPE Home > Th. List > nfneg | Unicode version |
Description: Bound-variable hypothesis builder for the negative of a complex number. (Contributed by NM, 12-Jun-2005.) (Revised by Mario Carneiro, 15-Oct-2016.) |
Ref | Expression |
---|---|
nfneg.1 |
Ref | Expression |
---|---|
nfneg |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nfneg.1 | . . . 4 | |
2 | 1 | a1i 11 | . . 3 |
3 | 2 | nfnegd 9838 | . 2 |
4 | 3 | trud 1404 | 1 |
Colors of variables: wff setvar class |
Syntax hints: wtru 1396 F/_ wnfc 2605 -u cneg 9829 |
This theorem is referenced by: riotaneg 10543 zriotaneg 11002 infcvgaux1i 13668 mbfposb 22060 dvfsum2 22435 neglimc 31653 stoweidlem23 31805 stoweidlem47 31829 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1618 ax-4 1631 ax-5 1704 ax-6 1747 ax-7 1790 ax-10 1837 ax-11 1842 ax-12 1854 ax-13 1999 ax-ext 2435 |
This theorem depends on definitions: df-bi 185 df-or 370 df-an 371 df-3an 975 df-tru 1398 df-ex 1613 df-nf 1617 df-sb 1740 df-clab 2443 df-cleq 2449 df-clel 2452 df-nfc 2607 df-ral 2812 df-rex 2813 df-rab 2816 df-v 3111 df-dif 3478 df-un 3480 df-in 3482 df-ss 3489 df-nul 3785 df-if 3942 df-sn 4030 df-pr 4032 df-op 4036 df-uni 4250 df-br 4453 df-iota 5556 df-fv 5601 df-ov 6299 df-neg 9831 |
Copyright terms: Public domain | W3C validator |