Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  nfnfc Unicode version

Theorem nfnfc 2628
 Description: Hypothesis builder for . (Contributed by Mario Carneiro, 11-Aug-2016.) Remove dependency on ax-13 1999. (Revised by Wolf Lammen, 10-Dec-2019.)
Hypothesis
Ref Expression
nfnfc.1
Assertion
Ref Expression
nfnfc

Proof of Theorem nfnfc
Dummy variable is distinct from all other variables.
StepHypRef Expression
1 df-nfc 2607 . 2
2 nfnfc.1 . . . . 5
3 nfcr 2610 . . . . 5
42, 3ax-mp 5 . . . 4
54nfnf 1949 . . 3
65nfal 1947 . 2
71, 6nfxfr 1645 1
 Colors of variables: wff setvar class Syntax hints:  A.wal 1393  F/wnf 1616  e.wcel 1818  F/_wnfc 2605 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1618  ax-4 1631  ax-5 1704  ax-6 1747  ax-7 1790  ax-10 1837  ax-11 1842  ax-12 1854 This theorem depends on definitions:  df-bi 185  df-ex 1613  df-nf 1617  df-nfc 2607
 Copyright terms: Public domain W3C validator