MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nfnfc1 Unicode version

Theorem nfnfc1 2622
Description: is bound in . (Contributed by Mario Carneiro, 11-Aug-2016.)
Assertion
Ref Expression
nfnfc1

Proof of Theorem nfnfc1
Dummy variable is distinct from all other variables.
StepHypRef Expression
1 df-nfc 2607 . 2
2 nfnf1 1899 . . 3
32nfal 1947 . 2
41, 3nfxfr 1645 1
Colors of variables: wff setvar class
Syntax hints:  A.wal 1393  F/wnf 1616  e.wcel 1818  F/_wnfc 2605
This theorem is referenced by:  vtoclgft  3157  sbcralt  3408  sbcrextOLD  3409  sbcrext  3410  csbiebt  3454  nfopd  4234  nfimad  5351  nffvd  5880
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1618  ax-4 1631  ax-5 1704  ax-6 1747  ax-7 1790  ax-10 1837  ax-11 1842  ax-12 1854
This theorem depends on definitions:  df-bi 185  df-ex 1613  df-nf 1617  df-nfc 2607
  Copyright terms: Public domain W3C validator