MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nfofr Unicode version

Theorem nfofr 6546
Description: Hypothesis builder for function relation. (Contributed by Mario Carneiro, 28-Jul-2014.)
Hypothesis
Ref Expression
nfof.1
Assertion
Ref Expression
nfofr
Distinct variable group:   ,

Proof of Theorem nfofr
StepHypRef Expression
1 nfcv 2619 1
Colors of variables: wff setvar class
Syntax hints:  F/_wnfc 2605  oRcofr 6539
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1618  ax-5 1704
This theorem depends on definitions:  df-bi 185  df-nf 1617  df-nfc 2607
  Copyright terms: Public domain W3C validator