MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nfoprab1 Unicode version

Theorem nfoprab1 6346
Description: The abstraction variables in an operation class abstraction are not free. (Contributed by NM, 25-Apr-1995.) (Revised by David Abernethy, 19-Jun-2012.)
Assertion
Ref Expression
nfoprab1

Proof of Theorem nfoprab1
Dummy variable is distinct from all other variables.
StepHypRef Expression
1 df-oprab 6300 . 2
2 nfe1 1840 . . 3
32nfab 2623 . 2
41, 3nfcxfr 2617 1
Colors of variables: wff setvar class
Syntax hints:  /\wa 369  =wceq 1395  E.wex 1612  {cab 2442  F/_wnfc 2605  <.cop 4035  {coprab 6297
This theorem is referenced by:  ssoprab2b  6354  nfmpt21  6364  ov3  6439  tposoprab  7010
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1618  ax-4 1631  ax-5 1704  ax-6 1747  ax-7 1790  ax-10 1837  ax-11 1842  ax-12 1854  ax-13 1999  ax-ext 2435
This theorem depends on definitions:  df-bi 185  df-an 371  df-tru 1398  df-ex 1613  df-nf 1617  df-sb 1740  df-clab 2443  df-cleq 2449  df-clel 2452  df-nfc 2607  df-oprab 6300
  Copyright terms: Public domain W3C validator