MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nfpr Unicode version

Theorem nfpr 4076
Description: Bound-variable hypothesis builder for unordered pairs. (Contributed by NM, 14-Nov-1995.)
Hypotheses
Ref Expression
nfpr.1
nfpr.2
Assertion
Ref Expression
nfpr

Proof of Theorem nfpr
Dummy variable is distinct from all other variables.
StepHypRef Expression
1 dfpr2 4044 . 2
2 nfpr.1 . . . . 5
32nfeq2 2636 . . . 4
4 nfpr.2 . . . . 5
54nfeq2 2636 . . . 4
63, 5nfor 1935 . . 3
76nfab 2623 . 2
81, 7nfcxfr 2617 1
Colors of variables: wff setvar class
Syntax hints:  \/wo 368  =wceq 1395  {cab 2442  F/_wnfc 2605  {cpr 4031
This theorem is referenced by:  nfsn  4087  nfop  4233  nfaltop  29630
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1618  ax-4 1631  ax-5 1704  ax-6 1747  ax-7 1790  ax-10 1837  ax-11 1842  ax-12 1854  ax-13 1999  ax-ext 2435
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-tru 1398  df-ex 1613  df-nf 1617  df-sb 1740  df-clab 2443  df-cleq 2449  df-clel 2452  df-nfc 2607  df-v 3111  df-un 3480  df-sn 4030  df-pr 4032
  Copyright terms: Public domain W3C validator