MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nfpw Unicode version

Theorem nfpw 3988
Description: Bound-variable hypothesis builder for power class. (Contributed by NM, 28-Oct-2003.) (Revised by Mario Carneiro, 13-Oct-2016.)
Hypothesis
Ref Expression
nfpw.1
Assertion
Ref Expression
nfpw

Proof of Theorem nfpw
Dummy variable is distinct from all other variables.
StepHypRef Expression
1 df-pw 3978 . 2
2 nfcv 2616 . . . 4
3 nfpw.1 . . . 4
42, 3nfss 3463 . . 3
54nfab 2620 . 2
61, 5nfcxfr 2614 1
Colors of variables: wff setvar class
Syntax hints:  {cab 2439  F/_wnfc 2602  C_wss 3442  ~Pcpw 3976
This theorem is referenced by:  stoweidlem57  30586
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1592  ax-4 1603  ax-5 1671  ax-6 1710  ax-7 1730  ax-10 1777  ax-11 1782  ax-12 1794  ax-13 1955  ax-ext 2432
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-tru 1373  df-ex 1588  df-nf 1591  df-sb 1703  df-clab 2440  df-cleq 2446  df-clel 2449  df-nfc 2604  df-ral 2805  df-in 3449  df-ss 3456  df-pw 3978
  Copyright terms: Public domain W3C validator