MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nfpw Unicode version

Theorem nfpw 4024
Description: Bound-variable hypothesis builder for power class. (Contributed by NM, 28-Oct-2003.) (Revised by Mario Carneiro, 13-Oct-2016.)
Hypothesis
Ref Expression
nfpw.1
Assertion
Ref Expression
nfpw

Proof of Theorem nfpw
Dummy variable is distinct from all other variables.
StepHypRef Expression
1 df-pw 4014 . 2
2 nfcv 2619 . . . 4
3 nfpw.1 . . . 4
42, 3nfss 3496 . . 3
54nfab 2623 . 2
61, 5nfcxfr 2617 1
Colors of variables: wff setvar class
Syntax hints:  {cab 2442  F/_wnfc 2605  C_wss 3475  ~Pcpw 4012
This theorem is referenced by:  stoweidlem57  31839
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1618  ax-4 1631  ax-5 1704  ax-6 1747  ax-7 1790  ax-10 1837  ax-11 1842  ax-12 1854  ax-13 1999  ax-ext 2435
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-tru 1398  df-ex 1613  df-nf 1617  df-sb 1740  df-clab 2443  df-cleq 2449  df-clel 2452  df-nfc 2607  df-ral 2812  df-in 3482  df-ss 3489  df-pw 4014
  Copyright terms: Public domain W3C validator