MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nfpw Unicode version

Theorem nfpw 3849
Description: Bound-variable hypothesis builder for power class. (Contributed by NM, 28-Oct-2003.) (Revised by Mario Carneiro, 13-Oct-2016.)
Hypothesis
Ref Expression
nfpw.1
Assertion
Ref Expression
nfpw

Proof of Theorem nfpw
Dummy variable is distinct from all other variables.
StepHypRef Expression
1 df-pw 3839 . 2
2 nfcv 2558 . . . 4
3 nfpw.1 . . . 4
42, 3nfss 3326 . . 3
54nfab 2562 . 2
61, 5nfcxfr 2555 1
Colors of variables: wff setvar class
Syntax hints:  {cab 2408  F/_wnfc 2545  C_wss 3305  ~Pcpw 3837
This theorem is referenced by:  stoweidlem57  29526
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1586  ax-4 1597  ax-5 1661  ax-6 1701  ax-7 1721  ax-10 1768  ax-11 1773  ax-12 1785  ax-13 1934  ax-ext 2403
This theorem depends on definitions:  df-bi 179  df-or 363  df-an 364  df-tru 1355  df-ex 1582  df-nf 1585  df-sb 1694  df-clab 2409  df-cleq 2415  df-clel 2418  df-nfc 2547  df-ral 2699  df-in 3312  df-ss 3319  df-pw 3839
  Copyright terms: Public domain W3C validator