![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
Mirrors > Home > MPE Home > Th. List > nfr | Unicode version |
Description: Consequence of the definition of not-free. (Contributed by Mario Carneiro, 26-Sep-2016.) |
Ref | Expression |
---|---|
nfr |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-nf 1617 | . 2 | |
2 | sp 1859 | . 2 | |
3 | 1, 2 | sylbi 195 | 1 |
Colors of variables: wff setvar class |
Syntax hints: -> wi 4 A. wal 1393
F/ wnf 1616 |
This theorem is referenced by: nfri 1874 nfrd 1875 19.21t 1904 19.23t 1909 nfimd 1917 sbft 2120 wl-nfeqfb 29990 bj-alrim 34246 bj-nexdt 34250 bj-cbv3tb 34271 bj-nfs1t2 34275 bj-sbftv 34345 bj-equsal1t 34395 stdpc5t 34400 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1618 ax-4 1631 ax-5 1704 ax-6 1747 ax-7 1790 ax-12 1854 |
This theorem depends on definitions: df-bi 185 df-ex 1613 df-nf 1617 |
Copyright terms: Public domain | W3C validator |