MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nfr Unicode version

Theorem nfr 1873
Description: Consequence of the definition of not-free. (Contributed by Mario Carneiro, 26-Sep-2016.)
Assertion
Ref Expression
nfr

Proof of Theorem nfr
StepHypRef Expression
1 df-nf 1617 . 2
2 sp 1859 . 2
31, 2sylbi 195 1
Colors of variables: wff setvar class
Syntax hints:  ->wi 4  A.wal 1393  F/wnf 1616
This theorem is referenced by:  nfri  1874  nfrd  1875  19.21t  1904  19.23t  1909  nfimd  1917  sbft  2120  wl-nfeqfb  29990  bj-alrim  34246  bj-nexdt  34250  bj-cbv3tb  34271  bj-nfs1t2  34275  bj-sbftv  34345  bj-equsal1t  34395  stdpc5t  34400
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1618  ax-4 1631  ax-5 1704  ax-6 1747  ax-7 1790  ax-12 1854
This theorem depends on definitions:  df-bi 185  df-ex 1613  df-nf 1617
  Copyright terms: Public domain W3C validator