MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nfra2 Unicode version

Theorem nfra2 2844
Description: Similar to Lemma 24 of [Monk2] p. 114, except the quantification of the antecedent is restricted. Derived automatically from hbra2VD 33660. Contributed by Alan Sare 31-Dec-2011. (Contributed by NM, 31-Dec-2011.)
Assertion
Ref Expression
nfra2
Distinct variable group:   ,

Proof of Theorem nfra2
StepHypRef Expression
1 nfcv 2619 . 2
2 nfra1 2838 . 2
31, 2nfral 2843 1
Colors of variables: wff setvar class
Syntax hints:  F/wnf 1616  A.wral 2807
This theorem is referenced by:  ralcom2  3022  invdisj  4441  reusv3  4660  dedekind  9765  dedekindle  9766  mreexexd  15045  gsummatr01lem4  19160  ordtconlem1  27906  islptre  31625  tratrb  33307  bnj1379  33889
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1618  ax-4 1631  ax-5 1704  ax-6 1747  ax-7 1790  ax-10 1837  ax-11 1842  ax-12 1854  ax-13 1999  ax-ext 2435
This theorem depends on definitions:  df-bi 185  df-an 371  df-tru 1398  df-ex 1613  df-nf 1617  df-cleq 2449  df-clel 2452  df-nfc 2607  df-ral 2812
  Copyright terms: Public domain W3C validator