![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
Mirrors > Home > MPE Home > Th. List > nfra2 | Unicode version |
Description: Similar to Lemma 24 of [Monk2] p. 114, except the quantification of the antecedent is restricted. Derived automatically from hbra2VD 33660. Contributed by Alan Sare 31-Dec-2011. (Contributed by NM, 31-Dec-2011.) |
Ref | Expression |
---|---|
nfra2 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nfcv 2619 | . 2 | |
2 | nfra1 2838 | . 2 | |
3 | 1, 2 | nfral 2843 | 1 |
Colors of variables: wff setvar class |
Syntax hints: F/ wnf 1616 A. wral 2807 |
This theorem is referenced by: ralcom2 3022 invdisj 4441 reusv3 4660 dedekind 9765 dedekindle 9766 mreexexd 15045 gsummatr01lem4 19160 ordtconlem1 27906 islptre 31625 tratrb 33307 bnj1379 33889 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1618 ax-4 1631 ax-5 1704 ax-6 1747 ax-7 1790 ax-10 1837 ax-11 1842 ax-12 1854 ax-13 1999 ax-ext 2435 |
This theorem depends on definitions: df-bi 185 df-an 371 df-tru 1398 df-ex 1613 df-nf 1617 df-cleq 2449 df-clel 2452 df-nfc 2607 df-ral 2812 |
Copyright terms: Public domain | W3C validator |