![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
Mirrors > Home > MPE Home > Th. List > nfrab | Unicode version |
Description: A variable not free in a wff remains so in a restricted class abstraction. (Contributed by NM, 13-Oct-2003.) (Revised by Mario Carneiro, 9-Oct-2016.) |
Ref | Expression |
---|---|
nfrab.1 | |
nfrab.2 |
Ref | Expression |
---|---|
nfrab |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-rab 2816 | . 2 | |
2 | nftru 1626 | . . . 4 | |
3 | nfrab.2 | . . . . . . . 8 | |
4 | 3 | nfcri 2612 | . . . . . . 7 |
5 | eleq1 2529 | . . . . . . 7 | |
6 | 4, 5 | dvelimnf 2081 | . . . . . 6 |
7 | nfrab.1 | . . . . . . 7 | |
8 | 7 | a1i 11 | . . . . . 6 |
9 | 6, 8 | nfand 1925 | . . . . 5 |
10 | 9 | adantl 466 | . . . 4 |
11 | 2, 10 | nfabd2 2640 | . . 3 |
12 | 11 | trud 1404 | . 2 |
13 | 1, 12 | nfcxfr 2617 | 1 |
Colors of variables: wff setvar class |
Syntax hints: -. wn 3 /\ wa 369
A. wal 1393 wtru 1396 F/ wnf 1616 e. wcel 1818
{ cab 2442 F/_ wnfc 2605 { crab 2811 |
This theorem is referenced by: nfdif 3624 nfin 3704 reusv6OLD 4663 nfse 4859 elfvmptrab1 5976 elovmpt2rab 6521 elovmpt2rab1 6522 ovmpt3rab1 6534 elovmpt3rab1 6536 mpt2xopoveq 6966 nfoi 7960 scottex 8324 elmptrab 20328 iundisjf 27448 nnindf 27610 nfwlim 29378 finminlem 30136 indexa 30224 binomcxplemdvbinom 31258 binomcxplemdvsum 31260 binomcxplemnotnn0 31261 dvnprodlem1 31743 stoweidlem16 31798 stoweidlem31 31813 stoweidlem34 31816 stoweidlem35 31817 stoweidlem48 31830 stoweidlem51 31833 stoweidlem53 31835 stoweidlem54 31836 stoweidlem57 31839 stoweidlem59 31841 fourierdlem31 31920 fourierdlem48 31937 fourierdlem51 31940 etransclem32 32049 bnj1398 34090 bnj1445 34100 bnj1449 34104 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1618 ax-4 1631 ax-5 1704 ax-6 1747 ax-7 1790 ax-10 1837 ax-11 1842 ax-12 1854 ax-13 1999 ax-ext 2435 |
This theorem depends on definitions: df-bi 185 df-or 370 df-an 371 df-tru 1398 df-ex 1613 df-nf 1617 df-sb 1740 df-clab 2443 df-cleq 2449 df-clel 2452 df-nfc 2607 df-rab 2816 |
Copyright terms: Public domain | W3C validator |