![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
Mirrors > Home > MPE Home > Th. List > nfreu | Unicode version |
Description: Bound-variable hypothesis builder for restricted unique existence. (Contributed by NM, 30-Oct-2010.) (Revised by Mario Carneiro, 8-Oct-2016.) |
Ref | Expression |
---|---|
nfreu.1 | |
nfreu.2 |
Ref | Expression |
---|---|
nfreu |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nftru 1626 | . . 3 | |
2 | nfreu.1 | . . . 4 | |
3 | 2 | a1i 11 | . . 3 |
4 | nfreu.2 | . . . 4 | |
5 | 4 | a1i 11 | . . 3 |
6 | 1, 3, 5 | nfreud 3030 | . 2 |
7 | 6 | trud 1404 | 1 |
Colors of variables: wff setvar class |
Syntax hints: wtru 1396 F/ wnf 1616 F/_ wnfc 2605
E! wreu 2809 |
This theorem is referenced by: sbcreu 3414 sbcreugOLD 3415 2reu7 32196 2reu8 32197 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1618 ax-4 1631 ax-5 1704 ax-6 1747 ax-7 1790 ax-10 1837 ax-11 1842 ax-12 1854 ax-13 1999 ax-ext 2435 |
This theorem depends on definitions: df-bi 185 df-an 371 df-tru 1398 df-ex 1613 df-nf 1617 df-eu 2286 df-cleq 2449 df-clel 2452 df-nfc 2607 df-reu 2814 |
Copyright terms: Public domain | W3C validator |