MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nfreu1 Unicode version

Theorem nfreu1 3028
Description: is not free in . (Contributed by NM, 19-Mar-1997.)
Assertion
Ref Expression
nfreu1

Proof of Theorem nfreu1
StepHypRef Expression
1 df-reu 2814 . 2
2 nfeu1 2294 . 2
31, 2nfxfr 1645 1
Colors of variables: wff setvar class
Syntax hints:  /\wa 369  F/wnf 1616  e.wcel 1818  E!weu 2282  E!wreu 2809
This theorem is referenced by:  riota2df  6278  2reu8  32197
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1618  ax-4 1631  ax-5 1704  ax-6 1747  ax-7 1790  ax-10 1837  ax-11 1842  ax-12 1854
This theorem depends on definitions:  df-bi 185  df-ex 1613  df-nf 1617  df-eu 2286  df-reu 2814
  Copyright terms: Public domain W3C validator