![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
Mirrors > Home > MPE Home > Th. List > nfreud | Unicode version |
Description: Deduction version of nfreu 3032. (Contributed by NM, 15-Feb-2013.) (Revised by Mario Carneiro, 8-Oct-2016.) |
Ref | Expression |
---|---|
nfreud.1 | |
nfreud.2 | |
nfreud.3 |
Ref | Expression |
---|---|
nfreud |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-reu 2814 | . 2 | |
2 | nfreud.1 | . . 3 | |
3 | nfcvf 2644 | . . . . . 6 | |
4 | 3 | adantl 466 | . . . . 5 |
5 | nfreud.2 | . . . . . 6 | |
6 | 5 | adantr 465 | . . . . 5 |
7 | 4, 6 | nfeld 2627 | . . . 4 |
8 | nfreud.3 | . . . . 5 | |
9 | 8 | adantr 465 | . . . 4 |
10 | 7, 9 | nfand 1925 | . . 3 |
11 | 2, 10 | nfeud2 2296 | . 2 |
12 | 1, 11 | nfxfrd 1646 | 1 |
Colors of variables: wff setvar class |
Syntax hints: -. wn 3 -> wi 4
/\ wa 369 A. wal 1393 F/ wnf 1616
e. wcel 1818 E! weu 2282 F/_ wnfc 2605
E! wreu 2809 |
This theorem is referenced by: nfreu 3032 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1618 ax-4 1631 ax-5 1704 ax-6 1747 ax-7 1790 ax-10 1837 ax-11 1842 ax-12 1854 ax-13 1999 ax-ext 2435 |
This theorem depends on definitions: df-bi 185 df-an 371 df-tru 1398 df-ex 1613 df-nf 1617 df-eu 2286 df-cleq 2449 df-clel 2452 df-nfc 2607 df-reu 2814 |
Copyright terms: Public domain | W3C validator |