![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
Mirrors > Home > MPE Home > Th. List > nfrex | Unicode version |
Description: Bound-variable hypothesis builder for restricted quantification. (Contributed by NM, 1-Sep-1999.) (Revised by Mario Carneiro, 7-Oct-2016.) (Proof shortened by Wolf Lammen, 30-Dec-2019.) |
Ref | Expression |
---|---|
nfrex.1 | |
nfrex.2 |
Ref | Expression |
---|---|
nfrex |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nftru 1626 | . . 3 | |
2 | nfrex.1 | . . . 4 | |
3 | 2 | a1i 11 | . . 3 |
4 | nfrex.2 | . . . 4 | |
5 | 4 | a1i 11 | . . 3 |
6 | 1, 3, 5 | nfrexd 2919 | . 2 |
7 | 6 | trud 1404 | 1 |
Colors of variables: wff setvar class |
Syntax hints: wtru 1396 F/ wnf 1616 F/_ wnfc 2605
E. wrex 2808 |
This theorem is referenced by: r19.12 2983 sbcrexgOLD 3413 nfuni 4255 rabasiun 4334 nfiun 4358 nffr 4858 abrexex2g 6777 abrexex2 6781 nfrecs 7063 indexfi 7848 nfoi 7960 ixpiunwdom 8038 hsmexlem2 8828 iunfo 8935 iundom2g 8936 reclem2pr 9447 nfwrd 12569 nfsum1 13512 nfsum 13513 nfcprod1 13717 nfcprod 13718 ptclsg 20116 iunmbl2 21967 mbfsup 22071 limciun 22298 iundisjf 27448 xrofsup 27582 locfinreflem 27843 indexa 30224 filbcmb 30231 sdclem2 30235 sdclem1 30236 fdc1 30239 rexrabdioph 30727 rexfrabdioph 30728 elnn0rabdioph 30736 dvdsrabdioph 30743 infrglb 31584 climinff 31617 cncfshift 31676 stoweidlem53 31835 stoweidlem57 31839 fourierdlem48 31937 fourierdlem73 31962 cbvrex2 32178 bnj873 33982 bnj1014 34018 bnj1123 34042 bnj1307 34079 bnj1445 34100 bnj1446 34101 bnj1467 34110 bnj1463 34111 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1618 ax-4 1631 ax-5 1704 ax-6 1747 ax-7 1790 ax-10 1837 ax-11 1842 ax-12 1854 ax-13 1999 ax-ext 2435 |
This theorem depends on definitions: df-bi 185 df-an 371 df-tru 1398 df-ex 1613 df-nf 1617 df-cleq 2449 df-clel 2452 df-nfc 2607 df-ral 2812 df-rex 2813 |
Copyright terms: Public domain | W3C validator |