MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nfriota1 Unicode version

Theorem nfriota1 6264
Description: The abstraction variable in a restricted iota descriptor isn't free. (Contributed by NM, 12-Oct-2011.) (Revised by Mario Carneiro, 15-Oct-2016.)
Assertion
Ref Expression
nfriota1
Distinct variable group:   ,

Proof of Theorem nfriota1
StepHypRef Expression
1 df-riota 6257 . 2
2 nfiota1 5558 . 2
31, 2nfcxfr 2617 1
Colors of variables: wff setvar class
Syntax hints:  /\wa 369  e.wcel 1818  F/_wnfc 2605  iotacio 5554  iota_crio 6256
This theorem is referenced by:  riotaprop  6281  riotass2  6284  riotass  6285  riotaxfrd  6288  lble  10520  riotaneg  10543  zriotaneg  11002  riotaocN  34934  ltrniotaval  36307  cdlemksv2  36573  cdlemkuv2  36593  cdlemk36  36639
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1618  ax-4 1631  ax-5 1704  ax-6 1747  ax-7 1790  ax-10 1837  ax-11 1842  ax-12 1854  ax-13 1999  ax-ext 2435
This theorem depends on definitions:  df-bi 185  df-an 371  df-tru 1398  df-ex 1613  df-nf 1617  df-sb 1740  df-clab 2443  df-cleq 2449  df-clel 2452  df-nfc 2607  df-ral 2812  df-rex 2813  df-sn 4030  df-uni 4250  df-iota 5556  df-riota 6257
  Copyright terms: Public domain W3C validator