MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nfriotad Unicode version

Theorem nfriotad 6265
Description: Deduction version of nfriota 6266. (Contributed by NM, 18-Feb-2013.) (Revised by Mario Carneiro, 15-Oct-2016.)
Hypotheses
Ref Expression
nfriotad.1
nfriotad.2
nfriotad.3
Assertion
Ref Expression
nfriotad

Proof of Theorem nfriotad
StepHypRef Expression
1 df-riota 6257 . 2
2 nfriotad.1 . . . . . 6
3 nfnae 2058 . . . . . 6
42, 3nfan 1928 . . . . 5
5 nfcvf 2644 . . . . . . . 8
65adantl 466 . . . . . . 7
7 nfriotad.3 . . . . . . . 8
87adantr 465 . . . . . . 7
96, 8nfeld 2627 . . . . . 6
10 nfriotad.2 . . . . . . 7
1110adantr 465 . . . . . 6
129, 11nfand 1925 . . . . 5
134, 12nfiotad 5559 . . . 4
1413ex 434 . . 3
15 nfiota1 5558 . . . 4
16 eqidd 2458 . . . . 5
1716drnfc1 2638 . . . 4
1815, 17mpbiri 233 . . 3
1914, 18pm2.61d2 160 . 2
201, 19nfcxfrd 2618 1
Colors of variables: wff setvar class
Syntax hints:  -.wn 3  ->wi 4  /\wa 369  A.wal 1393  F/wnf 1616  e.wcel 1818  F/_wnfc 2605  iotacio 5554  iota_crio 6256
This theorem is referenced by:  nfriota  6266
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1618  ax-4 1631  ax-5 1704  ax-6 1747  ax-7 1790  ax-10 1837  ax-11 1842  ax-12 1854  ax-13 1999  ax-ext 2435
This theorem depends on definitions:  df-bi 185  df-an 371  df-tru 1398  df-ex 1613  df-nf 1617  df-sb 1740  df-clab 2443  df-cleq 2449  df-clel 2452  df-nfc 2607  df-ral 2812  df-rex 2813  df-sn 4030  df-uni 4250  df-iota 5556  df-riota 6257
  Copyright terms: Public domain W3C validator