![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
Mirrors > Home > MPE Home > Th. List > nfriotad | Unicode version |
Description: Deduction version of nfriota 6266. (Contributed by NM, 18-Feb-2013.) (Revised by Mario Carneiro, 15-Oct-2016.) |
Ref | Expression |
---|---|
nfriotad.1 | |
nfriotad.2 | |
nfriotad.3 |
Ref | Expression |
---|---|
nfriotad |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-riota 6257 | . 2 | |
2 | nfriotad.1 | . . . . . 6 | |
3 | nfnae 2058 | . . . . . 6 | |
4 | 2, 3 | nfan 1928 | . . . . 5 |
5 | nfcvf 2644 | . . . . . . . 8 | |
6 | 5 | adantl 466 | . . . . . . 7 |
7 | nfriotad.3 | . . . . . . . 8 | |
8 | 7 | adantr 465 | . . . . . . 7 |
9 | 6, 8 | nfeld 2627 | . . . . . 6 |
10 | nfriotad.2 | . . . . . . 7 | |
11 | 10 | adantr 465 | . . . . . 6 |
12 | 9, 11 | nfand 1925 | . . . . 5 |
13 | 4, 12 | nfiotad 5559 | . . . 4 |
14 | 13 | ex 434 | . . 3 |
15 | nfiota1 5558 | . . . 4 | |
16 | eqidd 2458 | . . . . 5 | |
17 | 16 | drnfc1 2638 | . . . 4 |
18 | 15, 17 | mpbiri 233 | . . 3 |
19 | 14, 18 | pm2.61d2 160 | . 2 |
20 | 1, 19 | nfcxfrd 2618 | 1 |
Colors of variables: wff setvar class |
Syntax hints: -. wn 3 -> wi 4
/\ wa 369 A. wal 1393 F/ wnf 1616
e. wcel 1818 F/_ wnfc 2605 iota cio 5554
iota_ crio 6256 |
This theorem is referenced by: nfriota 6266 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1618 ax-4 1631 ax-5 1704 ax-6 1747 ax-7 1790 ax-10 1837 ax-11 1842 ax-12 1854 ax-13 1999 ax-ext 2435 |
This theorem depends on definitions: df-bi 185 df-an 371 df-tru 1398 df-ex 1613 df-nf 1617 df-sb 1740 df-clab 2443 df-cleq 2449 df-clel 2452 df-nfc 2607 df-ral 2812 df-rex 2813 df-sn 4030 df-uni 4250 df-iota 5556 df-riota 6257 |
Copyright terms: Public domain | W3C validator |