MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nfrn Unicode version

Theorem nfrn 5250
Description: Bound-variable hypothesis builder for range. (Contributed by NM, 1-Sep-1999.) (Revised by Mario Carneiro, 15-Oct-2016.)
Hypothesis
Ref Expression
nfrn.1
Assertion
Ref Expression
nfrn

Proof of Theorem nfrn
StepHypRef Expression
1 df-rn 5015 . 2
2 nfrn.1 . . . 4
32nfcnv 5186 . . 3
43nfdm 5249 . 2
51, 4nfcxfr 2617 1
Colors of variables: wff setvar class
Syntax hints:  F/_wnfc 2605  `'ccnv 5003  domcdm 5004  rancrn 5005
This theorem is referenced by:  nfima  5350  nff  5732  nffo  5799  fliftfun  6210  zfrep6  6768  ptbasfi  20082  utopsnneiplem  20750  restmetu  21090  itg2cnlem1  22168  locfinreflem  27843  oms0  28266  totbndbnd  30285  refsumcn  31405  suprnmpt  31451  stoweidlem27  31809  stoweidlem29  31811  stoweidlem31  31813  stoweidlem35  31817  stoweidlem59  31841  stoweidlem62  31844  stirlinglem5  31860  fourierdlem31  31920  fourierdlem53  31942  fourierdlem80  31969  fourierdlem93  31982  bnj1366  33888
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1618  ax-4 1631  ax-5 1704  ax-6 1747  ax-7 1790  ax-10 1837  ax-11 1842  ax-12 1854  ax-13 1999  ax-ext 2435
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3an 975  df-tru 1398  df-ex 1613  df-nf 1617  df-sb 1740  df-clab 2443  df-cleq 2449  df-clel 2452  df-nfc 2607  df-rab 2816  df-v 3111  df-dif 3478  df-un 3480  df-in 3482  df-ss 3489  df-nul 3785  df-if 3942  df-sn 4030  df-pr 4032  df-op 4036  df-br 4453  df-opab 4511  df-cnv 5012  df-dm 5014  df-rn 5015
  Copyright terms: Public domain W3C validator