MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nfs1f Unicode version

Theorem nfs1f 2124
Description: If is not free in , it is not free in . (Contributed by Mario Carneiro, 11-Aug-2016.)
Hypothesis
Ref Expression
nfs1f.1
Assertion
Ref Expression
nfs1f

Proof of Theorem nfs1f
StepHypRef Expression
1 nfs1f.1 . . 3
21sbf 2121 . 2
32, 1nfxfr 1645 1
Colors of variables: wff setvar class
Syntax hints:  F/wnf 1616  [wsb 1739
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1618  ax-4 1631  ax-5 1704  ax-6 1747  ax-7 1790  ax-10 1837  ax-12 1854  ax-13 1999
This theorem depends on definitions:  df-bi 185  df-an 371  df-ex 1613  df-nf 1617  df-sb 1740
  Copyright terms: Public domain W3C validator