MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nfsab Unicode version

Theorem nfsab 2448
Description: Bound-variable hypothesis builder for a class abstraction. (Contributed by Mario Carneiro, 11-Aug-2016.)
Hypothesis
Ref Expression
nfsab.1
Assertion
Ref Expression
nfsab
Distinct variable group:   ,

Proof of Theorem nfsab
StepHypRef Expression
1 nfsab.1 . . . 4
21nfri 1874 . . 3
32hbab 2447 . 2
43nfi 1623 1
Colors of variables: wff setvar class
Syntax hints:  F/wnf 1616  e.wcel 1818  {cab 2442
This theorem is referenced by:  nfab  2623  upbdrech  31505  ssfiunibd  31509
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1618  ax-4 1631  ax-5 1704  ax-6 1747  ax-7 1790  ax-10 1837  ax-11 1842  ax-12 1854  ax-13 1999
This theorem depends on definitions:  df-bi 185  df-an 371  df-ex 1613  df-nf 1617  df-sb 1740  df-clab 2443
  Copyright terms: Public domain W3C validator