![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
Mirrors > Home > MPE Home > Th. List > nfsb4t | Unicode version |
Description: A variable not free remains so after substitution with a distinct variable (closed form of nfsb4 2131). (Contributed by NM, 7-Apr-2004.) (Revised by Mario Carneiro, 4-Oct-2016.) (Proof shortened by Wolf Lammen, 11-May-2018.) |
Ref | Expression |
---|---|
nfsb4t |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sbequ12 1992 | . . . . . . . 8 | |
2 | 1 | sps 1865 | . . . . . . 7 |
3 | 2 | drnf2 2072 | . . . . . 6 |
4 | 3 | biimpd 207 | . . . . 5 |
5 | 4 | spsd 1867 | . . . 4 |
6 | 5 | impcom 430 | . . 3 |
7 | 6 | a1d 25 | . 2 |
8 | nfnf1 1899 | . . . . 5 | |
9 | 8 | nfal 1947 | . . . 4 |
10 | nfnae 2058 | . . . 4 | |
11 | 9, 10 | nfan 1928 | . . 3 |
12 | nfa1 1897 | . . . 4 | |
13 | nfnae 2058 | . . . 4 | |
14 | 12, 13 | nfan 1928 | . . 3 |
15 | sp 1859 | . . . 4 | |
16 | 15 | adantr 465 | . . 3 |
17 | nfsb2 2100 | . . . 4 | |
18 | 17 | adantl 466 | . . 3 |
19 | 1 | a1i 11 | . . 3 |
20 | 11, 14, 16, 18, 19 | dvelimdf 2077 | . 2 |
21 | 7, 20 | pm2.61dan 791 | 1 |
Colors of variables: wff setvar class |
Syntax hints: -. wn 3 -> wi 4
<-> wb 184 /\ wa 369 A. wal 1393
F/ wnf 1616 [ wsb 1739 |
This theorem is referenced by: nfsb4 2131 nfsbd 2186 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1618 ax-4 1631 ax-5 1704 ax-6 1747 ax-7 1790 ax-10 1837 ax-11 1842 ax-12 1854 ax-13 1999 |
This theorem depends on definitions: df-bi 185 df-an 371 df-ex 1613 df-nf 1617 df-sb 1740 |
Copyright terms: Public domain | W3C validator |