![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
Mirrors > Home > MPE Home > Th. List > nfsbc | Unicode version |
Description: Bound-variable hypothesis builder for class substitution. (Contributed by NM, 7-Sep-2014.) (Revised by Mario Carneiro, 12-Oct-2016.) |
Ref | Expression |
---|---|
nfsbc.1 | |
nfsbc.2 |
Ref | Expression |
---|---|
nfsbc |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nftru 1626 | . . 3 | |
2 | nfsbc.1 | . . . 4 | |
3 | 2 | a1i 11 | . . 3 |
4 | nfsbc.2 | . . . 4 | |
5 | 4 | a1i 11 | . . 3 |
6 | 1, 3, 5 | nfsbcd 3348 | . 2 |
7 | 6 | trud 1404 | 1 |
Colors of variables: wff setvar class |
Syntax hints: wtru 1396 F/ wnf 1616 F/_ wnfc 2605
[. wsbc 3327 |
This theorem is referenced by: cbvralcsf 3466 opelopabgf 4772 opelopabf 4777 ralrnmpt 6040 elovmpt2rab 6521 elovmpt2rab1 6522 ovmpt3rabdm 6535 elovmpt3rab1 6536 dfopab2 6854 dfoprab3s 6855 mpt2xopoveq 6966 elmptrab 20328 indexa 30224 sdclem1 30236 sbcalf 30517 sbcexf 30518 sbccomieg 30726 rexrabdioph 30727 bnj1445 34100 bnj1446 34101 bnj1467 34110 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1618 ax-4 1631 ax-5 1704 ax-6 1747 ax-7 1790 ax-10 1837 ax-11 1842 ax-12 1854 ax-13 1999 ax-ext 2435 |
This theorem depends on definitions: df-bi 185 df-an 371 df-tru 1398 df-ex 1613 df-nf 1617 df-sb 1740 df-clab 2443 df-cleq 2449 df-clel 2452 df-nfc 2607 df-sbc 3328 |
Copyright terms: Public domain | W3C validator |