![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
Mirrors > Home > MPE Home > Th. List > nfsbcd | Unicode version |
Description: Deduction version of nfsbc 3349. (Contributed by NM, 23-Nov-2005.) (Revised by Mario Carneiro, 12-Oct-2016.) |
Ref | Expression |
---|---|
nfsbcd.1 | |
nfsbcd.2 | |
nfsbcd.3 |
Ref | Expression |
---|---|
nfsbcd |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-sbc 3328 | . 2 | |
2 | nfsbcd.2 | . . 3 | |
3 | nfsbcd.1 | . . . 4 | |
4 | nfsbcd.3 | . . . 4 | |
5 | 3, 4 | nfabd 2641 | . . 3 |
6 | 2, 5 | nfeld 2627 | . 2 |
7 | 1, 6 | nfxfrd 1646 | 1 |
Colors of variables: wff setvar class |
Syntax hints: -> wi 4 F/ wnf 1616
e. wcel 1818 { cab 2442 F/_ wnfc 2605
[. wsbc 3327 |
This theorem is referenced by: nfsbc 3349 nfcsbd 3451 sbcnestgf 3839 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1618 ax-4 1631 ax-5 1704 ax-6 1747 ax-7 1790 ax-10 1837 ax-11 1842 ax-12 1854 ax-13 1999 ax-ext 2435 |
This theorem depends on definitions: df-bi 185 df-an 371 df-ex 1613 df-nf 1617 df-sb 1740 df-clab 2443 df-cleq 2449 df-clel 2452 df-nfc 2607 df-sbc 3328 |
Copyright terms: Public domain | W3C validator |