![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
Mirrors > Home > MPE Home > Th. List > nfsbd | Unicode version |
Description: Deduction version of nfsb 2184. (Contributed by NM, 15-Feb-2013.) |
Ref | Expression |
---|---|
nfsbd.1 | |
nfsbd.2 |
Ref | Expression |
---|---|
nfsbd |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nfsbd.1 | . . . 4 | |
2 | nfsbd.2 | . . . 4 | |
3 | 1, 2 | alrimi 1877 | . . 3 |
4 | nfsb4t 2130 | . . 3 | |
5 | 3, 4 | syl 16 | . 2 |
6 | ax16nf 1944 | . 2 | |
7 | 5, 6 | pm2.61d2 160 | 1 |
Colors of variables: wff setvar class |
Syntax hints: -. wn 3 -> wi 4
A. wal 1393 F/ wnf 1616 [ wsb 1739 |
This theorem is referenced by: nfabd2 2640 wl-sb8eut 30022 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1618 ax-4 1631 ax-5 1704 ax-6 1747 ax-7 1790 ax-10 1837 ax-11 1842 ax-12 1854 ax-13 1999 |
This theorem depends on definitions: df-bi 185 df-an 371 df-ex 1613 df-nf 1617 df-sb 1740 |
Copyright terms: Public domain | W3C validator |