MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nfsbd Unicode version

Theorem nfsbd 2186
Description: Deduction version of nfsb 2184. (Contributed by NM, 15-Feb-2013.)
Hypotheses
Ref Expression
nfsbd.1
nfsbd.2
Assertion
Ref Expression
nfsbd
Distinct variable group:   ,

Proof of Theorem nfsbd
StepHypRef Expression
1 nfsbd.1 . . . 4
2 nfsbd.2 . . . 4
31, 2alrimi 1877 . . 3
4 nfsb4t 2130 . . 3
53, 4syl 16 . 2
6 ax16nf 1944 . 2
75, 6pm2.61d2 160 1
Colors of variables: wff setvar class
Syntax hints:  -.wn 3  ->wi 4  A.wal 1393  F/wnf 1616  [wsb 1739
This theorem is referenced by:  nfabd2  2640  wl-sb8eut  30022
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1618  ax-4 1631  ax-5 1704  ax-6 1747  ax-7 1790  ax-10 1837  ax-11 1842  ax-12 1854  ax-13 1999
This theorem depends on definitions:  df-bi 185  df-an 371  df-ex 1613  df-nf 1617  df-sb 1740
  Copyright terms: Public domain W3C validator