Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  nfsn Unicode version

Theorem nfsn 4087
 Description: Bound-variable hypothesis builder for singletons. (Contributed by NM, 14-Nov-1995.)
Hypothesis
Ref Expression
nfsn.1
Assertion
Ref Expression
nfsn

Proof of Theorem nfsn
StepHypRef Expression
1 dfsn2 4042 . 2
2 nfsn.1 . . 3
32, 2nfpr 4076 . 2
41, 3nfcxfr 2617 1
 Colors of variables: wff setvar class Syntax hints:  F/_wnfc 2605  {csn 4029  {cpr 4031 This theorem is referenced by:  nfop  4233  nfsuc  4954  sniota  5583  dfmpt2  6890  nfpred  29249  nfaltop  29630  stoweidlem21  31803  stoweidlem47  31829  nfdfat  32215  bnj958  33998  bnj1000  33999  bnj1446  34101  bnj1447  34102  bnj1448  34103  bnj1466  34109  bnj1467  34110 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1618  ax-4 1631  ax-5 1704  ax-6 1747  ax-7 1790  ax-10 1837  ax-11 1842  ax-12 1854  ax-13 1999  ax-ext 2435 This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-tru 1398  df-ex 1613  df-nf 1617  df-sb 1740  df-clab 2443  df-cleq 2449  df-clel 2452  df-nfc 2607  df-v 3111  df-un 3480  df-sn 4030  df-pr 4032
 Copyright terms: Public domain W3C validator