![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
Mirrors > Home > MPE Home > Th. List > nfso | Unicode version |
Description: Bound-variable hypothesis builder for total orders. (Contributed by Stefan O'Rear, 20-Jan-2015.) |
Ref | Expression |
---|---|
nfpo.r | |
nfpo.a |
Ref | Expression |
---|---|
nfso |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-so 4806 | . 2 | |
2 | nfpo.r | . . . 4 | |
3 | nfpo.a | . . . 4 | |
4 | 2, 3 | nfpo 4810 | . . 3 |
5 | nfcv 2619 | . . . . . . 7 | |
6 | nfcv 2619 | . . . . . . 7 | |
7 | 5, 2, 6 | nfbr 4496 | . . . . . 6 |
8 | nfv 1707 | . . . . . 6 | |
9 | 6, 2, 5 | nfbr 4496 | . . . . . 6 |
10 | 7, 8, 9 | nf3or 1936 | . . . . 5 |
11 | 3, 10 | nfral 2843 | . . . 4 |
12 | 3, 11 | nfral 2843 | . . 3 |
13 | 4, 12 | nfan 1928 | . 2 |
14 | 1, 13 | nfxfr 1645 | 1 |
Colors of variables: wff setvar class |
Syntax hints: /\ wa 369 \/ w3o 972
F/ wnf 1616 F/_ wnfc 2605 A. wral 2807
class class class wbr 4452 Po wpo 4803
Or wor 4804 |
This theorem is referenced by: nfwe 4860 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1618 ax-4 1631 ax-5 1704 ax-6 1747 ax-7 1790 ax-10 1837 ax-11 1842 ax-12 1854 ax-13 1999 ax-ext 2435 |
This theorem depends on definitions: df-bi 185 df-or 370 df-an 371 df-3or 974 df-3an 975 df-tru 1398 df-ex 1613 df-nf 1617 df-sb 1740 df-clab 2443 df-cleq 2449 df-clel 2452 df-nfc 2607 df-ral 2812 df-rab 2816 df-v 3111 df-dif 3478 df-un 3480 df-in 3482 df-ss 3489 df-nul 3785 df-if 3942 df-sn 4030 df-pr 4032 df-op 4036 df-br 4453 df-po 4805 df-so 4806 |
Copyright terms: Public domain | W3C validator |