MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nfsuc Unicode version

Theorem nfsuc 4954
Description: Bound-variable hypothesis builder for successor. (Contributed by NM, 15-Sep-2003.)
Hypothesis
Ref Expression
nfsuc.1
Assertion
Ref Expression
nfsuc

Proof of Theorem nfsuc
StepHypRef Expression
1 df-suc 4889 . 2
2 nfsuc.1 . . 3
32nfsn 4087 . . 3
42, 3nfun 3659 . 2
51, 4nfcxfr 2617 1
Colors of variables: wff setvar class
Syntax hints:  F/_wnfc 2605  u.cun 3473  {csn 4029  succsuc 4885
This theorem is referenced by:  rankidb  8239  dfon2lem3  29217
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1618  ax-4 1631  ax-5 1704  ax-6 1747  ax-7 1790  ax-10 1837  ax-11 1842  ax-12 1854  ax-13 1999  ax-ext 2435
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-tru 1398  df-ex 1613  df-nf 1617  df-sb 1740  df-clab 2443  df-cleq 2449  df-clel 2452  df-nfc 2607  df-v 3111  df-un 3480  df-sn 4030  df-pr 4032  df-suc 4889
  Copyright terms: Public domain W3C validator