![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
Mirrors > Home > MPE Home > Th. List > nfsum | Unicode version |
Description: Bound-variable hypothesis builder for sum: if is (effectively) not free in and , it is not free in . (Contributed by NM, 11-Dec-2005.) (Revised by Mario Carneiro, 13-Jun-2019.) |
Ref | Expression |
---|---|
nfsum.1 | |
nfsum.2 |
Ref | Expression |
---|---|
nfsum |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-sum 13509 | . 2 | |
2 | nfcv 2619 | . . . . 5 | |
3 | nfsum.1 | . . . . . . 7 | |
4 | nfcv 2619 | . . . . . . 7 | |
5 | 3, 4 | nfss 3496 | . . . . . 6 |
6 | nfcv 2619 | . . . . . . . 8 | |
7 | nfcv 2619 | . . . . . . . 8 | |
8 | 3 | nfcri 2612 | . . . . . . . . . 10 |
9 | nfcv 2619 | . . . . . . . . . . 11 | |
10 | nfsum.2 | . . . . . . . . . . 11 | |
11 | 9, 10 | nfcsb 3452 | . . . . . . . . . 10 |
12 | nfcv 2619 | . . . . . . . . . 10 | |
13 | 8, 11, 12 | nfif 3970 | . . . . . . . . 9 |
14 | 2, 13 | nfmpt 4540 | . . . . . . . 8 |
15 | 6, 7, 14 | nfseq 12117 | . . . . . . 7 |
16 | nfcv 2619 | . . . . . . 7 | |
17 | nfcv 2619 | . . . . . . 7 | |
18 | 15, 16, 17 | nfbr 4496 | . . . . . 6 |
19 | 5, 18 | nfan 1928 | . . . . 5 |
20 | 2, 19 | nfrex 2920 | . . . 4 |
21 | nfcv 2619 | . . . . 5 | |
22 | nfcv 2619 | . . . . . . . 8 | |
23 | nfcv 2619 | . . . . . . . 8 | |
24 | 22, 23, 3 | nff1o 5819 | . . . . . . 7 |
25 | nfcv 2619 | . . . . . . . . . 10 | |
26 | nfcv 2619 | . . . . . . . . . . . 12 | |
27 | 26, 10 | nfcsb 3452 | . . . . . . . . . . 11 |
28 | 21, 27 | nfmpt 4540 | . . . . . . . . . 10 |
29 | 25, 7, 28 | nfseq 12117 | . . . . . . . . 9 |
30 | 29, 6 | nffv 5878 | . . . . . . . 8 |
31 | 30 | nfeq2 2636 | . . . . . . 7 |
32 | 24, 31 | nfan 1928 | . . . . . 6 |
33 | 32 | nfex 1948 | . . . . 5 |
34 | 21, 33 | nfrex 2920 | . . . 4 |
35 | 20, 34 | nfor 1935 | . . 3 |
36 | 35 | nfiota 5560 | . 2 |
37 | 1, 36 | nfcxfr 2617 | 1 |
Colors of variables: wff setvar class |
Syntax hints: \/ wo 368 /\ wa 369
= wceq 1395 E. wex 1612 e. wcel 1818
F/_ wnfc 2605
E. wrex 2808 [_ csb 3434 C_ wss 3475
if cif 3941 class class class wbr 4452
e. cmpt 4510 iota cio 5554 -1-1-onto-> wf1o 5592 ` cfv 5593 (class class class)co 6296
0 cc0 9513 1 c1 9514 caddc 9516 cn 10561 cz 10889 cuz 11110
cfz 11701 seq cseq 12107 cli 13307 sum_ csu 13508 |
This theorem is referenced by: fsum2dlem 13585 fsumcom2 13589 fsumrlim 13625 fsumiun 13635 fsumcn 21374 fsum2cn 21375 nfitg1 22180 nfitg 22181 dvmptfsum 22376 fsumdvdscom 23461 binomcxplemdvsum 31260 binomcxplemnotnn0 31261 fsumcnf 31396 dvmptfprod 31742 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1618 ax-4 1631 ax-5 1704 ax-6 1747 ax-7 1790 ax-10 1837 ax-11 1842 ax-12 1854 ax-13 1999 ax-ext 2435 |
This theorem depends on definitions: df-bi 185 df-or 370 df-an 371 df-3an 975 df-tru 1398 df-ex 1613 df-nf 1617 df-sb 1740 df-clab 2443 df-cleq 2449 df-clel 2452 df-nfc 2607 df-ral 2812 df-rex 2813 df-rab 2816 df-v 3111 df-sbc 3328 df-csb 3435 df-dif 3478 df-un 3480 df-in 3482 df-ss 3489 df-nul 3785 df-if 3942 df-sn 4030 df-pr 4032 df-op 4036 df-uni 4250 df-br 4453 df-opab 4511 df-mpt 4512 df-xp 5010 df-rel 5011 df-cnv 5012 df-co 5013 df-dm 5014 df-rn 5015 df-res 5016 df-ima 5017 df-iota 5556 df-fun 5595 df-fn 5596 df-f 5597 df-f1 5598 df-fo 5599 df-f1o 5600 df-fv 5601 df-ov 6299 df-oprab 6300 df-mpt2 6301 df-recs 7061 df-rdg 7095 df-seq 12108 df-sum 13509 |
Copyright terms: Public domain | W3C validator |