MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nfth Unicode version

Theorem nfth 1625
Description: No variable is (effectively) free in a theorem. (Contributed by Mario Carneiro, 11-Aug-2016.)
Hypothesis
Ref Expression
hbth.1
Assertion
Ref Expression
nfth

Proof of Theorem nfth
StepHypRef Expression
1 hbth.1 . . 3
21hbth 1624 . 2
32nfi 1623 1
Colors of variables: wff setvar class
Syntax hints:  F/wnf 1616
This theorem is referenced by:  nftru  1626  nfequid  1792  exan  1973  sbc2ie  3403  uzindOLD  10982  infcvgaux1i  13668  exnel  29235  ellimcabssub0  31623
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1618
This theorem depends on definitions:  df-bi 185  df-nf 1617
  Copyright terms: Public domain W3C validator