![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
Mirrors > Home > MPE Home > Th. List > nfwe | Unicode version |
Description: Bound-variable hypothesis builder for well-orderings. (Contributed by Stefan O'Rear, 20-Jan-2015.) (Revised by Mario Carneiro, 14-Oct-2016.) |
Ref | Expression |
---|---|
nffr.r | |
nffr.a |
Ref | Expression |
---|---|
nfwe |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-we 4845 | . 2 | |
2 | nffr.r | . . . 4 | |
3 | nffr.a | . . . 4 | |
4 | 2, 3 | nffr 4858 | . . 3 |
5 | 2, 3 | nfso 4811 | . . 3 |
6 | 4, 5 | nfan 1928 | . 2 |
7 | 1, 6 | nfxfr 1645 | 1 |
Colors of variables: wff setvar class |
Syntax hints: /\ wa 369 F/ wnf 1616
F/_ wnfc 2605
Or wor 4804 Fr wfr 4840 We wwe 4842 |
This theorem is referenced by: nfoi 7960 aomclem6 31005 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1618 ax-4 1631 ax-5 1704 ax-6 1747 ax-7 1790 ax-10 1837 ax-11 1842 ax-12 1854 ax-13 1999 ax-ext 2435 |
This theorem depends on definitions: df-bi 185 df-or 370 df-an 371 df-3or 974 df-3an 975 df-tru 1398 df-ex 1613 df-nf 1617 df-sb 1740 df-clab 2443 df-cleq 2449 df-clel 2452 df-nfc 2607 df-ral 2812 df-rex 2813 df-rab 2816 df-v 3111 df-dif 3478 df-un 3480 df-in 3482 df-ss 3489 df-nul 3785 df-if 3942 df-sn 4030 df-pr 4032 df-op 4036 df-br 4453 df-po 4805 df-so 4806 df-fr 4843 df-we 4845 |
Copyright terms: Public domain | W3C validator |