Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  nfxfr Unicode version

Theorem nfxfr 1645
 Description: A utility lemma to transfer a bound-variable hypothesis builder into a definition. (Contributed by Mario Carneiro, 11-Aug-2016.)
Hypotheses
Ref Expression
nfbii.1
nfxfr.2
Assertion
Ref Expression
nfxfr

Proof of Theorem nfxfr
StepHypRef Expression
1 nfxfr.2 . 2
2 nfbii.1 . . 3
32nfbii 1644 . 2
41, 3mpbir 209 1
 Colors of variables: wff setvar class Syntax hints:  <->wb 184  F/wnf 1616 This theorem is referenced by:  nfnf1  1899  nfnan  1929  nf3an  1930  nfor  1935  nf3or  1936  nfnf  1949  nfs1f  2124  nfeu1  2294  nfmo1  2295  sb8euOLD  2319  nfnfc1  2622  nfnfc  2628  nfnfcALT  2629  nfeqOLD  2631  nfelOLD  2633  nfne  2788  nfnel  2800  nfra1  2838  nfre1  2918  nfrexOLD  2921  nfreu1  3028  nfrmo1  3029  nfrmo  3033  nfss  3496  nfdisj  4434  nfdisj1  4435  nfpo  4810  nfso  4811  nffr  4858  nfse  4859  nfwe  4860  nfrel  5093  sb8iota  5563  nffun  5615  nffn  5682  nff  5732  nff1  5784  nffo  5799  nff1o  5819  nfiso  6220  tz7.49  7129  nfixp  7508  wl-nfae1  29980  wl-ax11-lem4  30028  nfdfat  32215  bnj919  33825  bnj1379  33889  bnj571  33964  bnj607  33974  bnj873  33982  bnj981  34008  bnj1039  34027  bnj1128  34046  bnj1388  34089  bnj1398  34090  bnj1417  34097  bnj1444  34099  bnj1445  34100  bnj1446  34101  bnj1449  34104  bnj1467  34110  bnj1489  34112  bnj1312  34114  bnj1518  34120  bnj1525  34125  bj-nfnfc  34429 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1618  ax-4 1631 This theorem depends on definitions:  df-bi 185  df-nf 1617
 Copyright terms: Public domain W3C validator