![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
Mirrors > Home > MPE Home > Th. List > nic-ax | Unicode version |
Description: Nicod's axiom derived
from the standard ones. See Introduction to
Mathematical Philosophy by B. Russell, p. 152. Like meredith 1472, the
usual axioms can be derived from this and vice versa. Unlike meredith 1472,
Nicod uses a different connective ('nand'), so another form of modus
ponens must be used in proofs, e.g. { nic-ax 1506, nic-mp 1504 } is
equivalent to { luk-1 1488, luk-2 1489, luk-3 1490, ax-mp 5 } . In a
pure (standalone) treatment of Nicod's axiom, this theorem would be
changed to an axiom ($a statement). (Contributed by Jeff Hoffman,
19-Nov-2007.) (Proof modification is discouraged.)
(New usage is discouraged.) |
Ref | Expression |
---|---|
nic-ax |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nannan 1348 | . . . . 5 | |
2 | 1 | biimpi 194 | . . . 4 |
3 | simpl 457 | . . . . 5 | |
4 | 3 | imim2i 14 | . . . 4 |
5 | imnan 422 | . . . . . . 7 | |
6 | df-nan 1344 | . . . . . . 7 | |
7 | 5, 6 | bitr4i 252 | . . . . . 6 |
8 | con3 134 | . . . . . . . 8 | |
9 | 8 | imim2d 52 | . . . . . . 7 |
10 | imnan 422 | . . . . . . . 8 | |
11 | con2b 334 | . . . . . . . 8 | |
12 | df-nan 1344 | . . . . . . . 8 | |
13 | 10, 11, 12 | 3bitr4ri 278 | . . . . . . 7 |
14 | 9, 13 | syl6ibr 227 | . . . . . 6 |
15 | 7, 14 | syl5bir 218 | . . . . 5 |
16 | nanim 1350 | . . . . 5 | |
17 | 15, 16 | sylib 196 | . . . 4 |
18 | 2, 4, 17 | 3syl 20 | . . 3 |
19 | pm4.24 643 | . . . . 5 | |
20 | 19 | biimpi 194 | . . . 4 |
21 | nannan 1348 | . . . 4 | |
22 | 20, 21 | mpbir 209 | . . 3 |
23 | 18, 22 | jctil 537 | . 2 |
24 | nannan 1348 | . 2 | |
25 | 23, 24 | mpbir 209 | 1 |
Colors of variables: wff setvar class |
Syntax hints: -. wn 3 -> wi 4
/\ wa 369 -/\ wnan 1343 |
This theorem is referenced by: nic-imp 1508 nic-idlem1 1509 nic-idlem2 1510 nic-id 1511 nic-swap 1512 nic-luk1 1524 lukshef-ax1 1527 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 185 df-an 371 df-nan 1344 |
Copyright terms: Public domain | W3C validator |