MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nic-bi2 Unicode version

Theorem nic-bi2 1522
Description: Inference to extract the other side of an implication from a 'biconditional' definition. (Contributed by Jeff Hoffman, 18-Nov-2007.) (Proof modification is discouraged.) (New usage is discouraged.)
Hypothesis
Ref Expression
nic-bi2.1
Assertion
Ref Expression
nic-bi2

Proof of Theorem nic-bi2
StepHypRef Expression
1 nic-bi2.1 . . . 4
21nic-isw2 1514 . . 3
3 nic-id 1511 . . 3
42, 3nic-iimp1 1515 . 2
54nic-idel 1517 1
Colors of variables: wff setvar class
Syntax hints:  -/\wnan 1343
This theorem is referenced by:  nic-stdmp  1523  nic-luk1  1524  nic-luk2  1525  nic-luk3  1526
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 185  df-an 371  df-nan 1344
  Copyright terms: Public domain W3C validator