MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nic-dfneg Unicode version

Theorem nic-dfneg 1503
Description: Define negation in terms of 'nand'. Analogous to . In a pure (standalone) treatment of Nicod's axiom, this theorem would be changed to a definition ($a statement). (Contributed by NM, 11-Dec-2008.) (Proof modification is discouraged.) (New usage is discouraged.)
Assertion
Ref Expression
nic-dfneg

Proof of Theorem nic-dfneg
StepHypRef Expression
1 nannot 1351 . . 3
21bicomi 202 . 2
3 nanbi 1352 . 2
42, 3mpbi 208 1
Colors of variables: wff setvar class
Syntax hints:  -.wn 3  <->wb 184  -/\wnan 1343
This theorem is referenced by:  nic-luk2  1525  nic-luk3  1526
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-nan 1344
  Copyright terms: Public domain W3C validator