![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
Mirrors > Home > MPE Home > Th. List > nn0ind-raph | Unicode version |
Description: Principle of Mathematical Induction (inference schema) on nonnegative integers. The first four hypotheses give us the substitution instances we need; the last two are the basis and the induction step. Raph Levien remarks: "This seems a bit painful. I wonder if an explicit substitution version would be easier." (Contributed by Raph Levien, 10-Apr-2004.) |
Ref | Expression |
---|---|
nn0ind-raph.1 | |
nn0ind-raph.2 | |
nn0ind-raph.3 | |
nn0ind-raph.4 | |
nn0ind-raph.5 | |
nn0ind-raph.6 |
Ref | Expression |
---|---|
nn0ind-raph |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elnn0 10822 | . 2 | |
2 | dfsbcq2 3330 | . . . 4 | |
3 | nfv 1707 | . . . . 5 | |
4 | nn0ind-raph.2 | . . . . 5 | |
5 | 3, 4 | sbhypf 3156 | . . . 4 |
6 | nfv 1707 | . . . . 5 | |
7 | nn0ind-raph.3 | . . . . 5 | |
8 | 6, 7 | sbhypf 3156 | . . . 4 |
9 | nfv 1707 | . . . . 5 | |
10 | nn0ind-raph.4 | . . . . 5 | |
11 | 9, 10 | sbhypf 3156 | . . . 4 |
12 | nfsbc1v 3347 | . . . . 5 | |
13 | 1ex 9612 | . . . . 5 | |
14 | c0ex 9611 | . . . . . . 7 | |
15 | 0nn0 10835 | . . . . . . . . . . . 12 | |
16 | eleq1a 2540 | . . . . . . . . . . . 12 | |
17 | 15, 16 | ax-mp 5 | . . . . . . . . . . 11 |
18 | nn0ind-raph.5 | . . . . . . . . . . . . . . 15 | |
19 | nn0ind-raph.1 | . . . . . . . . . . . . . . 15 | |
20 | 18, 19 | mpbiri 233 | . . . . . . . . . . . . . 14 |
21 | eqeq2 2472 | . . . . . . . . . . . . . . . 16 | |
22 | 21, 4 | syl6bir 229 | . . . . . . . . . . . . . . 15 |
23 | 22 | pm5.74d 247 | . . . . . . . . . . . . . 14 |
24 | 20, 23 | mpbii 211 | . . . . . . . . . . . . 13 |
25 | 24 | com12 31 | . . . . . . . . . . . 12 |
26 | 14, 25 | vtocle 3183 | . . . . . . . . . . 11 |
27 | nn0ind-raph.6 | . . . . . . . . . . 11 | |
28 | 17, 26, 27 | sylc 60 | . . . . . . . . . 10 |
29 | 28 | adantr 465 | . . . . . . . . 9 |
30 | oveq1 6303 | . . . . . . . . . . . . 13 | |
31 | 0p1e1 10672 | . . . . . . . . . . . . 13 | |
32 | 30, 31 | syl6eq 2514 | . . . . . . . . . . . 12 |
33 | 32 | eqeq2d 2471 | . . . . . . . . . . 11 |
34 | 33, 7 | syl6bir 229 | . . . . . . . . . 10 |
35 | 34 | imp 429 | . . . . . . . . 9 |
36 | 29, 35 | mpbird 232 | . . . . . . . 8 |
37 | 36 | ex 434 | . . . . . . 7 |
38 | 14, 37 | vtocle 3183 | . . . . . 6 |
39 | sbceq1a 3338 | . . . . . 6 | |
40 | 38, 39 | mpbid 210 | . . . . 5 |
41 | 12, 13, 40 | vtoclef 3182 | . . . 4 |
42 | nnnn0 10827 | . . . . 5 | |
43 | 42, 27 | syl 16 | . . . 4 |
44 | 2, 5, 8, 11, 41, 43 | nnind 10579 | . . 3 |
45 | nfv 1707 | . . . . 5 | |
46 | eqeq1 2461 | . . . . . 6 | |
47 | 19 | bicomd 201 | . . . . . . . . 9 |
48 | 47, 10 | sylan9bb 699 | . . . . . . . 8 |
49 | 18, 48 | mpbii 211 | . . . . . . 7 |
50 | 49 | ex 434 | . . . . . 6 |
51 | 46, 50 | sylbird 235 | . . . . 5 |
52 | 45, 14, 51 | vtoclef 3182 | . . . 4 |
53 | 52 | eqcoms 2469 | . . 3 |
54 | 44, 53 | jaoi 379 | . 2 |
55 | 1, 54 | sylbi 195 | 1 |
Colors of variables: wff setvar class |
Syntax hints: -> wi 4 <-> wb 184
\/ wo 368 /\ wa 369 = wceq 1395
[ wsb 1739 e. wcel 1818 [. wsbc 3327
(class class class)co 6296 0 cc0 9513
1 c1 9514 caddc 9516 cn 10561 cn0 10820 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1618 ax-4 1631 ax-5 1704 ax-6 1747 ax-7 1790 ax-8 1820 ax-9 1822 ax-10 1837 ax-11 1842 ax-12 1854 ax-13 1999 ax-ext 2435 ax-sep 4573 ax-nul 4581 ax-pow 4630 ax-pr 4691 ax-un 6592 ax-resscn 9570 ax-1cn 9571 ax-icn 9572 ax-addcl 9573 ax-addrcl 9574 ax-mulcl 9575 ax-mulrcl 9576 ax-mulcom 9577 ax-addass 9578 ax-mulass 9579 ax-distr 9580 ax-i2m1 9581 ax-1ne0 9582 ax-1rid 9583 ax-rnegex 9584 ax-rrecex 9585 ax-cnre 9586 ax-pre-lttri 9587 ax-pre-lttrn 9588 ax-pre-ltadd 9589 |
This theorem depends on definitions: df-bi 185 df-or 370 df-an 371 df-3or 974 df-3an 975 df-tru 1398 df-ex 1613 df-nf 1617 df-sb 1740 df-eu 2286 df-mo 2287 df-clab 2443 df-cleq 2449 df-clel 2452 df-nfc 2607 df-ne 2654 df-nel 2655 df-ral 2812 df-rex 2813 df-reu 2814 df-rab 2816 df-v 3111 df-sbc 3328 df-csb 3435 df-dif 3478 df-un 3480 df-in 3482 df-ss 3489 df-pss 3491 df-nul 3785 df-if 3942 df-pw 4014 df-sn 4030 df-pr 4032 df-tp 4034 df-op 4036 df-uni 4250 df-iun 4332 df-br 4453 df-opab 4511 df-mpt 4512 df-tr 4546 df-eprel 4796 df-id 4800 df-po 4805 df-so 4806 df-fr 4843 df-we 4845 df-ord 4886 df-on 4887 df-lim 4888 df-suc 4889 df-xp 5010 df-rel 5011 df-cnv 5012 df-co 5013 df-dm 5014 df-rn 5015 df-res 5016 df-ima 5017 df-iota 5556 df-fun 5595 df-fn 5596 df-f 5597 df-f1 5598 df-fo 5599 df-f1o 5600 df-fv 5601 df-ov 6299 df-om 6701 df-recs 7061 df-rdg 7095 df-er 7330 df-en 7537 df-dom 7538 df-sdom 7539 df-pnf 9651 df-mnf 9652 df-ltxr 9654 df-nn 10562 df-n0 10821 |
Copyright terms: Public domain | W3C validator |