![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
Mirrors > Home > MPE Home > Th. List > nn0ind | Unicode version |
Description: Principle of Mathematical Induction (inference schema) on nonnegative integers. The first four hypotheses give us the substitution instances we need; the last two are the basis and the induction step. (Contributed by NM, 13-May-2004.) |
Ref | Expression |
---|---|
nn0ind.1 | |
nn0ind.2 | |
nn0ind.3 | |
nn0ind.4 | |
nn0ind.5 | |
nn0ind.6 |
Ref | Expression |
---|---|
nn0ind |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elnn0z 10902 | . 2 | |
2 | 0z 10900 | . . 3 | |
3 | nn0ind.1 | . . . 4 | |
4 | nn0ind.2 | . . . 4 | |
5 | nn0ind.3 | . . . 4 | |
6 | nn0ind.4 | . . . 4 | |
7 | nn0ind.5 | . . . . 5 | |
8 | 7 | a1i 11 | . . . 4 |
9 | elnn0z 10902 | . . . . . 6 | |
10 | nn0ind.6 | . . . . . 6 | |
11 | 9, 10 | sylbir 213 | . . . . 5 |
12 | 11 | 3adant1 1014 | . . . 4 |
13 | 3, 4, 5, 6, 8, 12 | uzind 10979 | . . 3 |
14 | 2, 13 | mp3an1 1311 | . 2 |
15 | 1, 14 | sylbi 195 | 1 |
Colors of variables: wff setvar class |
Syntax hints: -> wi 4 <-> wb 184
/\ wa 369 = wceq 1395 e. wcel 1818
class class class wbr 4452 (class class class)co 6296
0 cc0 9513 1 c1 9514 caddc 9516 cle 9650 cn0 10820
cz 10889 |
This theorem is referenced by: nn0indALT 10985 nn0indd 10986 zindd 10990 fzennn 12078 mulexp 12205 expadd 12208 expmul 12211 leexp1a 12224 bernneq 12292 modexp 12301 faccl 12363 facdiv 12365 facwordi 12367 faclbnd 12368 faclbnd6 12377 facubnd 12378 bccl 12400 wrdind 12702 wrd2ind 12703 cshweqrep 12789 cjexp 12983 absexp 13137 iseraltlem2 13505 binom 13642 bcxmas 13647 climcndslem1 13661 demoivreALT 13936 ruclem8 13970 odd2np1lem 14045 bitsinv1 14092 sadcadd 14108 sadadd2 14110 saddisjlem 14114 smu01lem 14135 smumullem 14142 alginv 14204 prmfac1 14259 pcfac 14418 ramcl 14547 mhmmulg 16174 psgnunilem3 16521 sylow1lem1 16618 efgsrel 16752 efgsfo 16757 efgred 16766 srgmulgass 17182 srgpcomp 17183 srgbinom 17196 lmodvsmmulgdi 17547 assamulgscm 17999 mplcoe3 18128 mplcoe3OLD 18129 cnfldexp 18451 tmdmulg 20591 expcn 21376 dvnadd 22332 dvnres 22334 dvnfre 22355 ply1divex 22537 fta1g 22568 plyco 22638 dgrco 22672 dvnply2 22683 plydivex 22693 fta1 22704 cxpmul2 23070 dchrisumlem1 23674 qabvle 23810 qabvexp 23811 ostth2lem2 23819 rusgranumwlk 24957 eupath2 24980 ex-ind-dvds 25170 gxnn0add 25276 gxnn0mul 25279 facgam 28608 subfacval2 28631 cvmliftlem7 28736 relexpsucl 29055 relexpcnv 29056 relexpdm 29058 relexprn 29059 relexpadd 29061 relexpindlem 29062 rtrclreclem.min 29070 binomfallfac 29163 faclim 29171 faclim2 29173 heiborlem4 30310 mzpexpmpt 30677 pell14qrexpclnn0 30802 rmxypos 30885 jm2.17a 30898 jm2.17b 30899 rmygeid 30902 jm2.19lem3 30933 hbtlem5 31077 cnsrexpcl 31114 fperiodmullem 31503 m1expeven 31585 stoweidlem17 31799 stoweidlem19 31801 wallispilem3 31849 lmodvsmdi 32975 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1618 ax-4 1631 ax-5 1704 ax-6 1747 ax-7 1790 ax-8 1820 ax-9 1822 ax-10 1837 ax-11 1842 ax-12 1854 ax-13 1999 ax-ext 2435 ax-sep 4573 ax-nul 4581 ax-pow 4630 ax-pr 4691 ax-un 6592 ax-resscn 9570 ax-1cn 9571 ax-icn 9572 ax-addcl 9573 ax-addrcl 9574 ax-mulcl 9575 ax-mulrcl 9576 ax-mulcom 9577 ax-addass 9578 ax-mulass 9579 ax-distr 9580 ax-i2m1 9581 ax-1ne0 9582 ax-1rid 9583 ax-rnegex 9584 ax-rrecex 9585 ax-cnre 9586 ax-pre-lttri 9587 ax-pre-lttrn 9588 ax-pre-ltadd 9589 ax-pre-mulgt0 9590 |
This theorem depends on definitions: df-bi 185 df-or 370 df-an 371 df-3or 974 df-3an 975 df-tru 1398 df-ex 1613 df-nf 1617 df-sb 1740 df-eu 2286 df-mo 2287 df-clab 2443 df-cleq 2449 df-clel 2452 df-nfc 2607 df-ne 2654 df-nel 2655 df-ral 2812 df-rex 2813 df-reu 2814 df-rab 2816 df-v 3111 df-sbc 3328 df-csb 3435 df-dif 3478 df-un 3480 df-in 3482 df-ss 3489 df-pss 3491 df-nul 3785 df-if 3942 df-pw 4014 df-sn 4030 df-pr 4032 df-tp 4034 df-op 4036 df-uni 4250 df-iun 4332 df-br 4453 df-opab 4511 df-mpt 4512 df-tr 4546 df-eprel 4796 df-id 4800 df-po 4805 df-so 4806 df-fr 4843 df-we 4845 df-ord 4886 df-on 4887 df-lim 4888 df-suc 4889 df-xp 5010 df-rel 5011 df-cnv 5012 df-co 5013 df-dm 5014 df-rn 5015 df-res 5016 df-ima 5017 df-iota 5556 df-fun 5595 df-fn 5596 df-f 5597 df-f1 5598 df-fo 5599 df-f1o 5600 df-fv 5601 df-riota 6257 df-ov 6299 df-oprab 6300 df-mpt2 6301 df-om 6701 df-recs 7061 df-rdg 7095 df-er 7330 df-en 7537 df-dom 7538 df-sdom 7539 df-pnf 9651 df-mnf 9652 df-xr 9653 df-ltxr 9654 df-le 9655 df-sub 9830 df-neg 9831 df-nn 10562 df-n0 10821 df-z 10890 |
Copyright terms: Public domain | W3C validator |