![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
Mirrors > Home > MPE Home > Th. List > nn0mulcld | Unicode version |
Description: Closure of multiplication of nonnegative integers, inference form. (Contributed by Mario Carneiro, 27-May-2016.) |
Ref | Expression |
---|---|
nn0red.1 | |
nn0addcld.2 |
Ref | Expression |
---|---|
nn0mulcld |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nn0red.1 | . 2 | |
2 | nn0addcld.2 | . 2 | |
3 | nn0mulcl 10857 | . 2 | |
4 | 1, 2, 3 | syl2anc 661 | 1 |
Colors of variables: wff setvar class |
Syntax hints: -> wi 4 e. wcel 1818
(class class class)co 6296 cmul 9518 cn0 10820 |
This theorem is referenced by: quoremnn0ALT 11984 expmulz 12212 faclbnd4lem3 12373 mulgcd 14184 rpmulgcd2 14246 odzdvds 14322 prmreclem3 14436 vdwapf 14490 vdwlem5 14503 vdwlem6 14504 odmodnn0 16564 odmulg 16578 odadd 16856 ablfacrplem 17116 ablfacrp2 17118 dchrisumlem1 23674 eulerpartlemsv2 28297 eulerpartlemsf 28298 eulerpartlems 28299 eulerpartlemv 28303 eulerpartlemb 28307 erdsze2lem1 28647 erdsze2lem2 28648 pell1qrge1 30806 jm2.27c 30949 rmxdiophlem 30957 hashgcdlem 31157 m1expeven 31585 stoweidlem1 31783 wallispilem4 31850 wallispilem5 31851 wallispi2lem2 31854 stirlinglem3 31858 stirlinglem5 31860 stirlinglem7 31862 stirlinglem10 31865 stirlinglem11 31866 etransclem32 32049 etransclem44 32061 etransclem46 32063 ply1mulgsumlem2 32987 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1618 ax-4 1631 ax-5 1704 ax-6 1747 ax-7 1790 ax-8 1820 ax-9 1822 ax-10 1837 ax-11 1842 ax-12 1854 ax-13 1999 ax-ext 2435 ax-sep 4573 ax-nul 4581 ax-pow 4630 ax-pr 4691 ax-un 6592 ax-resscn 9570 ax-1cn 9571 ax-icn 9572 ax-addcl 9573 ax-addrcl 9574 ax-mulcl 9575 ax-mulrcl 9576 ax-mulcom 9577 ax-addass 9578 ax-mulass 9579 ax-distr 9580 ax-i2m1 9581 ax-1ne0 9582 ax-1rid 9583 ax-rnegex 9584 ax-rrecex 9585 ax-cnre 9586 ax-pre-lttri 9587 ax-pre-lttrn 9588 ax-pre-ltadd 9589 |
This theorem depends on definitions: df-bi 185 df-or 370 df-an 371 df-3or 974 df-3an 975 df-tru 1398 df-ex 1613 df-nf 1617 df-sb 1740 df-eu 2286 df-mo 2287 df-clab 2443 df-cleq 2449 df-clel 2452 df-nfc 2607 df-ne 2654 df-nel 2655 df-ral 2812 df-rex 2813 df-reu 2814 df-rab 2816 df-v 3111 df-sbc 3328 df-csb 3435 df-dif 3478 df-un 3480 df-in 3482 df-ss 3489 df-pss 3491 df-nul 3785 df-if 3942 df-pw 4014 df-sn 4030 df-pr 4032 df-tp 4034 df-op 4036 df-uni 4250 df-iun 4332 df-br 4453 df-opab 4511 df-mpt 4512 df-tr 4546 df-eprel 4796 df-id 4800 df-po 4805 df-so 4806 df-fr 4843 df-we 4845 df-ord 4886 df-on 4887 df-lim 4888 df-suc 4889 df-xp 5010 df-rel 5011 df-cnv 5012 df-co 5013 df-dm 5014 df-rn 5015 df-res 5016 df-ima 5017 df-iota 5556 df-fun 5595 df-fn 5596 df-f 5597 df-f1 5598 df-fo 5599 df-f1o 5600 df-fv 5601 df-ov 6299 df-om 6701 df-recs 7061 df-rdg 7095 df-er 7330 df-en 7537 df-dom 7538 df-sdom 7539 df-pnf 9651 df-mnf 9652 df-ltxr 9654 df-nn 10562 df-n0 10821 |
Copyright terms: Public domain | W3C validator |