MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nndivdvds Unicode version

Theorem nndivdvds 13992
Description: Strong form of dvdsval2 13989 for positive integers. (Contributed by Stefan O'Rear, 13-Sep-2014.)
Assertion
Ref Expression
nndivdvds

Proof of Theorem nndivdvds
StepHypRef Expression
1 nnz 10911 . . . . 5
21adantl 466 . . . 4
3 nnne0 10593 . . . . 5
43adantl 466 . . . 4
5 nnz 10911 . . . . 5
65adantr 465 . . . 4
7 dvdsval2 13989 . . . 4
82, 4, 6, 7syl3anc 1228 . . 3
98anbi1d 704 . 2
10 nnre 10568 . . . . 5
1110adantr 465 . . . 4
12 nnre 10568 . . . . 5
1312adantl 466 . . . 4
14 nngt0 10590 . . . . 5
1514adantr 465 . . . 4
16 nngt0 10590 . . . . 5
1716adantl 466 . . . 4
1811, 13, 15, 17divgt0d 10506 . . 3
1918biantrud 507 . 2
20 elnnz 10899 . . 3
2120a1i 11 . 2
229, 19, 213bitr4d 285 1
Colors of variables: wff setvar class
Syntax hints:  ->wi 4  <->wb 184  /\wa 369  e.wcel 1818  =/=wne 2652   class class class wbr 4452  (class class class)co 6296   cr 9512  0cc0 9513   clt 9649   cdiv 10231   cn 10561   cz 10889   cdvds 13986
This theorem is referenced by:  isprm6  14250  divnumden  14281  gexexlem  16858  ablfac1lem  17119  pgpfac1lem3a  17127  znrrg  18604  dvdsflf1o  23463  mersenne  23502  perfectlem1  23504  perfect  23506  dchrvmasumlem1  23680  dchrisum0flblem2  23694  logsqvma  23727  oddpwdc  28293  jm2.20nn  30939  jm2.27c  30949  hashgcdlem  31157  hashgcdeq  31158  lcmgcdlem  31212  fouriersw  32014
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1618  ax-4 1631  ax-5 1704  ax-6 1747  ax-7 1790  ax-8 1820  ax-9 1822  ax-10 1837  ax-11 1842  ax-12 1854  ax-13 1999  ax-ext 2435  ax-sep 4573  ax-nul 4581  ax-pow 4630  ax-pr 4691  ax-un 6592  ax-resscn 9570  ax-1cn 9571  ax-icn 9572  ax-addcl 9573  ax-addrcl 9574  ax-mulcl 9575  ax-mulrcl 9576  ax-mulcom 9577  ax-addass 9578  ax-mulass 9579  ax-distr 9580  ax-i2m1 9581  ax-1ne0 9582  ax-1rid 9583  ax-rnegex 9584  ax-rrecex 9585  ax-cnre 9586  ax-pre-lttri 9587  ax-pre-lttrn 9588  ax-pre-ltadd 9589  ax-pre-mulgt0 9590
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 974  df-3an 975  df-tru 1398  df-ex 1613  df-nf 1617  df-sb 1740  df-eu 2286  df-mo 2287  df-clab 2443  df-cleq 2449  df-clel 2452  df-nfc 2607  df-ne 2654  df-nel 2655  df-ral 2812  df-rex 2813  df-reu 2814  df-rmo 2815  df-rab 2816  df-v 3111  df-sbc 3328  df-csb 3435  df-dif 3478  df-un 3480  df-in 3482  df-ss 3489  df-pss 3491  df-nul 3785  df-if 3942  df-pw 4014  df-sn 4030  df-pr 4032  df-tp 4034  df-op 4036  df-uni 4250  df-iun 4332  df-br 4453  df-opab 4511  df-mpt 4512  df-tr 4546  df-eprel 4796  df-id 4800  df-po 4805  df-so 4806  df-fr 4843  df-we 4845  df-ord 4886  df-on 4887  df-lim 4888  df-suc 4889  df-xp 5010  df-rel 5011  df-cnv 5012  df-co 5013  df-dm 5014  df-rn 5015  df-res 5016  df-ima 5017  df-iota 5556  df-fun 5595  df-fn 5596  df-f 5597  df-f1 5598  df-fo 5599  df-f1o 5600  df-fv 5601  df-riota 6257  df-ov 6299  df-oprab 6300  df-mpt2 6301  df-om 6701  df-recs 7061  df-rdg 7095  df-er 7330  df-en 7537  df-dom 7538  df-sdom 7539  df-pnf 9651  df-mnf 9652  df-xr 9653  df-ltxr 9654  df-le 9655  df-sub 9830  df-neg 9831  df-div 10232  df-nn 10562  df-z 10890  df-dvds 13987
  Copyright terms: Public domain W3C validator