![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
Mirrors > Home > MPE Home > Th. List > nnenom | Unicode version |
Description: The set of positive integers (as a subset of complex numbers) is equinumerous to omega (the set of finite ordinal numbers). (Contributed by NM, 31-Jul-2004.) (Revised by Mario Carneiro, 15-Sep-2013.) |
Ref | Expression |
---|---|
nnenom |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | omex 8081 | . . 3 | |
2 | nn0ex 10826 | . . 3 | |
3 | eqid 2457 | . . . 4 | |
4 | 3 | hashgf1o 12081 | . . 3 |
5 | f1oen2g 7552 | . . 3 | |
6 | 1, 2, 4, 5 | mp3an 1324 | . 2 |
7 | nn0ennn 12089 | . 2 | |
8 | 6, 7 | entr2i 7590 | 1 |
Colors of variables: wff setvar class |
Syntax hints: e. wcel 1818 cvv 3109
class class class wbr 4452 e. cmpt 4510
|` cres 5006 -1-1-onto-> wf1o 5592 (class class class)co 6296
com 6700
rec crdg 7094
cen 7533 0 cc0 9513 1 c1 9514
caddc 9516 cn 10561 cn0 10820 |
This theorem is referenced by: supcvg 13667 xpnnen 13942 xpomenOLD 13944 znnen 13946 qnnen 13947 rexpen 13961 aleph1re 13978 aleph1irr 13979 bitsf1 14096 unben 14427 odinf 16585 odhash 16594 cygctb 16894 1stcfb 19946 2ndcredom 19951 1stcelcls 19962 hauspwdom 20002 met1stc 21024 met2ndci 21025 re2ndc 21306 iscmet3 21732 ovolctb2 21903 ovolfi 21905 ovoliunlem3 21915 iunmbl2 21967 uniiccdif 21987 dyadmbl 22009 opnmblALT 22012 mbfimaopnlem 22062 itg2seq 22149 aannenlem3 22726 dirith2 23713 nmounbseqi 25692 nmobndseqi 25694 minvecolem5 25797 nnct 27529 dmvlsiga 28129 volmeas 28203 mblfinlem1 30051 ovoliunnfl 30056 heiborlem3 30309 heibor 30317 lzenom 30703 fiphp3d 30753 irrapx1 30764 pellex 30771 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1618 ax-4 1631 ax-5 1704 ax-6 1747 ax-7 1790 ax-8 1820 ax-9 1822 ax-10 1837 ax-11 1842 ax-12 1854 ax-13 1999 ax-ext 2435 ax-sep 4573 ax-nul 4581 ax-pow 4630 ax-pr 4691 ax-un 6592 ax-inf2 8079 ax-cnex 9569 ax-resscn 9570 ax-1cn 9571 ax-icn 9572 ax-addcl 9573 ax-addrcl 9574 ax-mulcl 9575 ax-mulrcl 9576 ax-mulcom 9577 ax-addass 9578 ax-mulass 9579 ax-distr 9580 ax-i2m1 9581 ax-1ne0 9582 ax-1rid 9583 ax-rnegex 9584 ax-rrecex 9585 ax-cnre 9586 ax-pre-lttri 9587 ax-pre-lttrn 9588 ax-pre-ltadd 9589 ax-pre-mulgt0 9590 |
This theorem depends on definitions: df-bi 185 df-or 370 df-an 371 df-3or 974 df-3an 975 df-tru 1398 df-ex 1613 df-nf 1617 df-sb 1740 df-eu 2286 df-mo 2287 df-clab 2443 df-cleq 2449 df-clel 2452 df-nfc 2607 df-ne 2654 df-nel 2655 df-ral 2812 df-rex 2813 df-reu 2814 df-rab 2816 df-v 3111 df-sbc 3328 df-csb 3435 df-dif 3478 df-un 3480 df-in 3482 df-ss 3489 df-pss 3491 df-nul 3785 df-if 3942 df-pw 4014 df-sn 4030 df-pr 4032 df-tp 4034 df-op 4036 df-uni 4250 df-iun 4332 df-br 4453 df-opab 4511 df-mpt 4512 df-tr 4546 df-eprel 4796 df-id 4800 df-po 4805 df-so 4806 df-fr 4843 df-we 4845 df-ord 4886 df-on 4887 df-lim 4888 df-suc 4889 df-xp 5010 df-rel 5011 df-cnv 5012 df-co 5013 df-dm 5014 df-rn 5015 df-res 5016 df-ima 5017 df-iota 5556 df-fun 5595 df-fn 5596 df-f 5597 df-f1 5598 df-fo 5599 df-f1o 5600 df-fv 5601 df-riota 6257 df-ov 6299 df-oprab 6300 df-mpt2 6301 df-om 6701 df-recs 7061 df-rdg 7095 df-er 7330 df-en 7537 df-dom 7538 df-sdom 7539 df-pnf 9651 df-mnf 9652 df-xr 9653 df-ltxr 9654 df-le 9655 df-sub 9830 df-neg 9831 df-nn 10562 df-n0 10821 df-z 10890 df-uz 11111 |
Copyright terms: Public domain | W3C validator |