![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
Mirrors > Home > MPE Home > Th. List > nnind | Unicode version |
Description: Principle of Mathematical Induction (inference schema). The first four hypotheses give us the substitution instances we need; the last two are the basis and the induction step. See nnaddcl 10583 for an example of its use. See nn0ind 10984 for induction on nonnegative integers and uzind 10979, uzind4 11168 for induction on an arbitrary upper set of integers. See indstr 11179 for strong induction. See also nnindALT 10580. This is an alternative for Metamath 100 proof #74. (Contributed by NM, 10-Jan-1997.) (Revised by Mario Carneiro, 16-Jun-2013.) |
Ref | Expression |
---|---|
nnind.1 | |
nnind.2 | |
nnind.3 | |
nnind.4 | |
nnind.5 | |
nnind.6 |
Ref | Expression |
---|---|
nnind |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 1nn 10572 | . . . . . 6 | |
2 | nnind.5 | . . . . . 6 | |
3 | nnind.1 | . . . . . . 7 | |
4 | 3 | elrab 3257 | . . . . . 6 |
5 | 1, 2, 4 | mpbir2an 920 | . . . . 5 |
6 | elrabi 3254 | . . . . . . 7 | |
7 | peano2nn 10573 | . . . . . . . . . 10 | |
8 | 7 | a1d 25 | . . . . . . . . 9 |
9 | nnind.6 | . . . . . . . . 9 | |
10 | 8, 9 | anim12d 563 | . . . . . . . 8 |
11 | nnind.2 | . . . . . . . . 9 | |
12 | 11 | elrab 3257 | . . . . . . . 8 |
13 | nnind.3 | . . . . . . . . 9 | |
14 | 13 | elrab 3257 | . . . . . . . 8 |
15 | 10, 12, 14 | 3imtr4g 270 | . . . . . . 7 |
16 | 6, 15 | mpcom 36 | . . . . . 6 |
17 | 16 | rgen 2817 | . . . . 5 |
18 | peano5nni 10564 | . . . . 5 | |
19 | 5, 17, 18 | mp2an 672 | . . . 4 |
20 | 19 | sseli 3499 | . . 3 |
21 | nnind.4 | . . . 4 | |
22 | 21 | elrab 3257 | . . 3 |
23 | 20, 22 | sylib 196 | . 2 |
24 | 23 | simprd 463 | 1 |
Colors of variables: wff setvar class |
Syntax hints: -> wi 4 <-> wb 184
/\ wa 369 = wceq 1395 e. wcel 1818
A. wral 2807 { crab 2811 C_ wss 3475
(class class class)co 6296 1 c1 9514
caddc 9516 cn 10561 |
This theorem is referenced by: nnindALT 10580 nn1m1nn 10581 nnaddcl 10583 nnmulcl 10584 nnge1 10587 nnsub 10599 nneo 10971 peano5uzi 10976 uzindOLD 10982 nn0ind-raph 10989 ser1const 12163 expcllem 12177 expeq0 12196 seqcoll 12512 climcndslem2 13662 sqrt2irr 13982 gcdmultiple 14188 rplpwr 14194 prmind2 14228 prmdvdsexp 14255 eulerthlem2 14312 pcmpt 14411 prmpwdvds 14422 vdwlem10 14508 mulgnnass 16170 imasdsf1olem 20876 ovolunlem1a 21907 ovolicc2lem3 21930 voliunlem1 21960 volsup 21966 dvexp 22356 plyco 22638 dgrcolem1 22670 vieta1 22708 emcllem6 23330 bposlem5 23563 2sqlem10 23649 dchrisum0flb 23695 iuninc 27428 ofldchr 27804 nexple 28005 esumfzf 28075 rrvsum 28393 subfacp1lem6 28629 cvmliftlem10 28739 faclimlem1 29168 incsequz 30241 bfplem1 30318 2nn0ind 30881 expmordi 30883 fmuldfeq 31577 dvnmptconst 31738 stoweidlem20 31802 wallispilem4 31850 wallispi2lem1 31853 wallispi2lem2 31854 dirkertrigeqlem1 31880 inductionexd 37967 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1618 ax-4 1631 ax-5 1704 ax-6 1747 ax-7 1790 ax-8 1820 ax-9 1822 ax-10 1837 ax-11 1842 ax-12 1854 ax-13 1999 ax-ext 2435 ax-sep 4573 ax-nul 4581 ax-pow 4630 ax-pr 4691 ax-un 6592 ax-1cn 9571 |
This theorem depends on definitions: df-bi 185 df-or 370 df-an 371 df-3or 974 df-3an 975 df-tru 1398 df-ex 1613 df-nf 1617 df-sb 1740 df-eu 2286 df-mo 2287 df-clab 2443 df-cleq 2449 df-clel 2452 df-nfc 2607 df-ne 2654 df-ral 2812 df-rex 2813 df-reu 2814 df-rab 2816 df-v 3111 df-sbc 3328 df-csb 3435 df-dif 3478 df-un 3480 df-in 3482 df-ss 3489 df-pss 3491 df-nul 3785 df-if 3942 df-pw 4014 df-sn 4030 df-pr 4032 df-tp 4034 df-op 4036 df-uni 4250 df-iun 4332 df-br 4453 df-opab 4511 df-mpt 4512 df-tr 4546 df-eprel 4796 df-id 4800 df-po 4805 df-so 4806 df-fr 4843 df-we 4845 df-ord 4886 df-on 4887 df-lim 4888 df-suc 4889 df-xp 5010 df-rel 5011 df-cnv 5012 df-co 5013 df-dm 5014 df-rn 5015 df-res 5016 df-ima 5017 df-iota 5556 df-fun 5595 df-fn 5596 df-f 5597 df-f1 5598 df-fo 5599 df-f1o 5600 df-fv 5601 df-ov 6299 df-om 6701 df-recs 7061 df-rdg 7095 df-nn 10562 |
Copyright terms: Public domain | W3C validator |