![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
Mirrors > Home > MPE Home > Th. List > nnmass | Unicode version |
Description: Multiplication of natural numbers is associative. Theorem 4K(4) of [Enderton] p. 81. (Contributed by NM, 20-Sep-1995.) (Revised by Mario Carneiro, 15-Nov-2014.) |
Ref | Expression |
---|---|
nnmass |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | oveq2 6304 | . . . . . 6 | |
2 | oveq2 6304 | . . . . . . 7 | |
3 | 2 | oveq2d 6312 | . . . . . 6 |
4 | 1, 3 | eqeq12d 2479 | . . . . 5 |
5 | 4 | imbi2d 316 | . . . 4 |
6 | oveq2 6304 | . . . . . 6 | |
7 | oveq2 6304 | . . . . . . 7 | |
8 | 7 | oveq2d 6312 | . . . . . 6 |
9 | 6, 8 | eqeq12d 2479 | . . . . 5 |
10 | oveq2 6304 | . . . . . 6 | |
11 | oveq2 6304 | . . . . . . 7 | |
12 | 11 | oveq2d 6312 | . . . . . 6 |
13 | 10, 12 | eqeq12d 2479 | . . . . 5 |
14 | oveq2 6304 | . . . . . 6 | |
15 | oveq2 6304 | . . . . . . 7 | |
16 | 15 | oveq2d 6312 | . . . . . 6 |
17 | 14, 16 | eqeq12d 2479 | . . . . 5 |
18 | nnmcl 7280 | . . . . . . 7 | |
19 | nnm0 7273 | . . . . . . 7 | |
20 | 18, 19 | syl 16 | . . . . . 6 |
21 | nnm0 7273 | . . . . . . . 8 | |
22 | 21 | oveq2d 6312 | . . . . . . 7 |
23 | nnm0 7273 | . . . . . . 7 | |
24 | 22, 23 | sylan9eqr 2520 | . . . . . 6 |
25 | 20, 24 | eqtr4d 2501 | . . . . 5 |
26 | oveq1 6303 | . . . . . . . . 9 | |
27 | nnmsuc 7275 | . . . . . . . . . . 11 | |
28 | 18, 27 | stoic3 1609 | . . . . . . . . . 10 |
29 | nnmsuc 7275 | . . . . . . . . . . . . 13 | |
30 | 29 | 3adant1 1014 | . . . . . . . . . . . 12 |
31 | 30 | oveq2d 6312 | . . . . . . . . . . 11 |
32 | nnmcl 7280 | . . . . . . . . . . . . . . . . 17 | |
33 | nndi 7291 | . . . . . . . . . . . . . . . . 17 | |
34 | 32, 33 | syl3an2 1262 | . . . . . . . . . . . . . . . 16 |
35 | 34 | 3exp 1195 | . . . . . . . . . . . . . . 15 |
36 | 35 | expd 436 | . . . . . . . . . . . . . 14 |
37 | 36 | com34 83 | . . . . . . . . . . . . 13 |
38 | 37 | pm2.43d 48 | . . . . . . . . . . . 12 |
39 | 38 | 3imp 1190 | . . . . . . . . . . 11 |
40 | 31, 39 | eqtrd 2498 | . . . . . . . . . 10 |
41 | 28, 40 | eqeq12d 2479 | . . . . . . . . 9 |
42 | 26, 41 | syl5ibr 221 | . . . . . . . 8 |
43 | 42 | 3exp 1195 | . . . . . . 7 |
44 | 43 | com3r 79 | . . . . . 6 |
45 | 44 | impd 431 | . . . . 5 |
46 | 9, 13, 17, 25, 45 | finds2 6728 | . . . 4 |
47 | 5, 46 | vtoclga 3173 | . . 3 |
48 | 47 | expdcom 439 | . 2 |
49 | 48 | 3imp 1190 | 1 |
Colors of variables: wff setvar class |
Syntax hints: -> wi 4 /\ wa 369
/\ w3a 973 = wceq 1395 e. wcel 1818
c0 3784 suc csuc 4885 (class class class)co 6296
com 6700
coa 7146
comu 7147 |
This theorem is referenced by: mulasspi 9296 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1618 ax-4 1631 ax-5 1704 ax-6 1747 ax-7 1790 ax-8 1820 ax-9 1822 ax-10 1837 ax-11 1842 ax-12 1854 ax-13 1999 ax-ext 2435 ax-sep 4573 ax-nul 4581 ax-pow 4630 ax-pr 4691 ax-un 6592 |
This theorem depends on definitions: df-bi 185 df-or 370 df-an 371 df-3or 974 df-3an 975 df-tru 1398 df-ex 1613 df-nf 1617 df-sb 1740 df-eu 2286 df-mo 2287 df-clab 2443 df-cleq 2449 df-clel 2452 df-nfc 2607 df-ne 2654 df-ral 2812 df-rex 2813 df-reu 2814 df-rab 2816 df-v 3111 df-sbc 3328 df-csb 3435 df-dif 3478 df-un 3480 df-in 3482 df-ss 3489 df-pss 3491 df-nul 3785 df-if 3942 df-pw 4014 df-sn 4030 df-pr 4032 df-tp 4034 df-op 4036 df-uni 4250 df-iun 4332 df-br 4453 df-opab 4511 df-mpt 4512 df-tr 4546 df-eprel 4796 df-id 4800 df-po 4805 df-so 4806 df-fr 4843 df-we 4845 df-ord 4886 df-on 4887 df-lim 4888 df-suc 4889 df-xp 5010 df-rel 5011 df-cnv 5012 df-co 5013 df-dm 5014 df-rn 5015 df-res 5016 df-ima 5017 df-iota 5556 df-fun 5595 df-fn 5596 df-f 5597 df-f1 5598 df-fo 5599 df-f1o 5600 df-fv 5601 df-ov 6299 df-oprab 6300 df-mpt2 6301 df-om 6701 df-recs 7061 df-rdg 7095 df-oadd 7153 df-omul 7154 |
Copyright terms: Public domain | W3C validator |