Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  nnnn0i Unicode version

Theorem nnnn0i 10828
 Description: A positive integer is a nonnegative integer. (Contributed by NM, 20-Jun-2005.)
Hypothesis
Ref Expression
nnnn0i.1
Assertion
Ref Expression
nnnn0i

Proof of Theorem nnnn0i
StepHypRef Expression
1 nnnn0i.1 . 2
2 nnnn0 10827 . 2
31, 2ax-mp 5 1
 Colors of variables: wff setvar class Syntax hints:  e.wcel 1818   cn 10561   cn0 10820 This theorem is referenced by:  1nn0  10836  2nn0  10837  3nn0  10838  4nn0  10839  5nn0  10840  6nn0  10841  7nn0  10842  8nn0  10843  9nn0  10844  10nn0  10845  numlt  11023  numlti  11028  faclbnd4lem1  12371  divalglem6  14056  pockthi  14425  dec5dvds2  14551  modxp1i  14556  mod2xnegi  14557  43prm  14607  83prm  14608  317prm  14611  strlemor2  14725  strlemor3  14726  log2ublem2  23278  ballotlemfmpn  28433  ballotth  28476 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1618  ax-4 1631  ax-5 1704  ax-6 1747  ax-7 1790  ax-10 1837  ax-11 1842  ax-12 1854  ax-13 1999  ax-ext 2435 This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-tru 1398  df-ex 1613  df-nf 1617  df-sb 1740  df-clab 2443  df-cleq 2449  df-clel 2452  df-nfc 2607  df-v 3111  df-un 3480  df-in 3482  df-ss 3489  df-n0 10821
 Copyright terms: Public domain W3C validator