MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nnunifi Unicode version

Theorem nnunifi 7791
Description: The union (supremum) of a finite set of finite ordinals is a finite ordinal. (Contributed by Stefan O'Rear, 5-Nov-2014.)
Assertion
Ref Expression
nnunifi

Proof of Theorem nnunifi
StepHypRef Expression
1 unieq 4257 . . . 4
2 uni0 4276 . . . . 5
3 peano1 6719 . . . . 5
42, 3eqeltri 2541 . . . 4
51, 4syl6eqel 2553 . . 3
65adantl 466 . 2
7 simpll 753 . . 3
8 omsson 6704 . . . . 5
97, 8syl6ss 3515 . . . 4
10 simplr 755 . . . 4
11 simpr 461 . . . 4
12 ordunifi 7790 . . . 4
139, 10, 11, 12syl3anc 1228 . . 3
147, 13sseldd 3504 . 2
156, 14pm2.61dane 2775 1
Colors of variables: wff setvar class
Syntax hints:  ->wi 4  /\wa 369  =wceq 1395  e.wcel 1818  =/=wne 2652  C_wss 3475   c0 3784  U.cuni 4249   con0 4883   com 6700   cfn 7536
This theorem is referenced by:  ackbij1lem16  8636  isf32lem5  8758
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1618  ax-4 1631  ax-5 1704  ax-6 1747  ax-7 1790  ax-8 1820  ax-9 1822  ax-10 1837  ax-11 1842  ax-12 1854  ax-13 1999  ax-ext 2435  ax-sep 4573  ax-nul 4581  ax-pow 4630  ax-pr 4691  ax-un 6592
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 974  df-3an 975  df-tru 1398  df-ex 1613  df-nf 1617  df-sb 1740  df-eu 2286  df-mo 2287  df-clab 2443  df-cleq 2449  df-clel 2452  df-nfc 2607  df-ne 2654  df-ral 2812  df-rex 2813  df-rab 2816  df-v 3111  df-sbc 3328  df-dif 3478  df-un 3480  df-in 3482  df-ss 3489  df-pss 3491  df-nul 3785  df-if 3942  df-pw 4014  df-sn 4030  df-pr 4032  df-tp 4034  df-op 4036  df-uni 4250  df-br 4453  df-opab 4511  df-tr 4546  df-eprel 4796  df-id 4800  df-po 4805  df-so 4806  df-fr 4843  df-we 4845  df-ord 4886  df-on 4887  df-lim 4888  df-suc 4889  df-xp 5010  df-rel 5011  df-cnv 5012  df-co 5013  df-dm 5014  df-rn 5015  df-res 5016  df-ima 5017  df-iota 5556  df-fun 5595  df-fn 5596  df-f 5597  df-f1 5598  df-fo 5599  df-f1o 5600  df-fv 5601  df-om 6701  df-1o 7149  df-er 7330  df-en 7537  df-fin 7540
  Copyright terms: Public domain W3C validator