![]() |
Mathbox for Scott Fenton |
< Previous
Next >
Nearby theorems |
Mirrors > Home > MPE Home > Th. List > Mathboxes > nobndlem6 | Unicode version |
Description: Lemma for nobndup 27959 and nobnddown 27960. Given an element of , then the first position where it differs from is strictly less than (Contributed by Scott Fenton, 3-Aug-2011.) |
Ref | Expression |
---|---|
nobndlem6.1 | |
nobndlem6.2 |
Ref | Expression |
---|---|
nobndlem6 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | bdayelon 27939 | . . . . 5 | |
2 | ssel2 3433 | . . . . . 6 | |
3 | nobndlem6.1 | . . . . . . . 8 | |
4 | 3 | nosgnn0i 27918 | . . . . . . 7 |
5 | fvnobday 27941 | . . . . . . . 8 | |
6 | 5 | neeq1d 2722 | . . . . . . 7 |
7 | 4, 6 | mpbiri 233 | . . . . . 6 |
8 | 2, 7 | syl 16 | . . . . 5 |
9 | fveq2 5773 | . . . . . . 7 | |
10 | 9 | neeq1d 2722 | . . . . . 6 |
11 | 10 | rspcev 3153 | . . . . 5 |
12 | 1, 8, 11 | sylancr 663 | . . . 4 |
13 | onintrab2 6497 | . . . 4 | |
14 | 12, 13 | sylib 196 | . . 3 |
15 | fveq1 5772 | . . . . . . . . 9 | |
16 | 15 | neeq1d 2722 | . . . . . . . 8 |
17 | 16 | rexbidv 2809 | . . . . . . 7 |
18 | 17 | rspcv 3149 | . . . . . 6 |
19 | 18 | ad2antlr 726 | . . . . 5 |
20 | 14 | ad2antrr 725 | . . . . . . 7 |
21 | simplr 754 | . . . . . . 7 | |
22 | onelon 4826 | . . . . . . . . . . 11 | |
23 | 22 | anim1i 568 | . . . . . . . . . 10 |
24 | 23 | anasss 647 | . . . . . . . . 9 |
25 | fveq2 5773 | . . . . . . . . . . 11 | |
26 | 25 | neeq1d 2722 | . . . . . . . . . 10 |
27 | 26 | intminss 4236 | . . . . . . . . 9 |
28 | 24, 27 | syl 16 | . . . . . . . 8 |
29 | 28 | adantll 713 | . . . . . . 7 |
30 | simprl 755 | . . . . . . 7 | |
31 | ontr2 4848 | . . . . . . . 8 | |
32 | 31 | imp 429 | . . . . . . 7 |
33 | 20, 21, 29, 30, 32 | syl22anc 1220 | . . . . . 6 |
34 | 33 | rexlimdvaa 2922 | . . . . 5 |
35 | 19, 34 | syld 44 | . . . 4 |
36 | 35 | ralrimiva 2879 | . . 3 |
37 | elintrabg 4223 | . . . 4 | |
38 | 37 | biimpar 485 | . . 3 |
39 | 14, 36, 38 | syl2anc 661 | . 2 |
40 | nobndlem6.2 | . 2 | |
41 | 39, 40 | syl6eleqr 2547 | 1 |
Colors of variables: wff setvar class |
Syntax hints: -> wi 4 /\ wa 369
= wceq 1370 e. wcel 1757 =/= wne 2641
A. wral 2792 E. wrex 2793 { crab 2796
C_ wss 3410 c0 3719 { cpr 3961 |^| cint 4210
con0 4801 ` cfv 5500 c1o 6997
c2o 6998
csur 27899 cbday 27901 |
This theorem is referenced by: nobndlem7 27957 nobndup 27959 nobnddown 27960 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1592 ax-4 1603 ax-5 1671 ax-6 1709 ax-7 1729 ax-8 1759 ax-9 1761 ax-10 1776 ax-11 1781 ax-12 1793 ax-13 1944 ax-ext 2429 ax-rep 4485 ax-sep 4495 ax-nul 4503 ax-pow 4552 ax-pr 4613 ax-un 6456 |
This theorem depends on definitions: df-bi 185 df-or 370 df-an 371 df-3or 966 df-3an 967 df-tru 1373 df-ex 1588 df-nf 1591 df-sb 1702 df-eu 2263 df-mo 2264 df-clab 2436 df-cleq 2442 df-clel 2445 df-nfc 2598 df-ne 2643 df-ral 2797 df-rex 2798 df-reu 2799 df-rab 2801 df-v 3054 df-sbc 3269 df-csb 3371 df-dif 3413 df-un 3415 df-in 3417 df-ss 3424 df-pss 3426 df-nul 3720 df-if 3874 df-pw 3944 df-sn 3960 df-pr 3962 df-tp 3964 df-op 3966 df-uni 4174 df-int 4211 df-iun 4255 df-br 4375 df-opab 4433 df-mpt 4434 df-tr 4468 df-eprel 4714 df-id 4718 df-po 4723 df-so 4724 df-fr 4761 df-we 4763 df-ord 4804 df-on 4805 df-suc 4807 df-xp 4928 df-rel 4929 df-cnv 4930 df-co 4931 df-dm 4932 df-rn 4933 df-res 4934 df-ima 4935 df-iota 5463 df-fun 5502 df-fn 5503 df-f 5504 df-f1 5505 df-fo 5506 df-f1o 5507 df-fv 5508 df-1o 7004 df-2o 7005 df-no 27902 df-bday 27904 |
Copyright terms: Public domain | W3C validator |