MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  notab Unicode version

Theorem notab 3767
Description: A class builder defined by a negation. (Contributed by FL, 18-Sep-2010.)
Assertion
Ref Expression
notab

Proof of Theorem notab
StepHypRef Expression
1 df-rab 2816 . . 3
2 rabab 3127 . . 3
31, 2eqtr3i 2488 . 2
4 difab 3766 . . 3
5 abid2 2597 . . . 4
65difeq1i 3617 . . 3
74, 6eqtr3i 2488 . 2
83, 7eqtr3i 2488 1
Colors of variables: wff setvar class
Syntax hints:  -.wn 3  /\wa 369  =wceq 1395  e.wcel 1818  {cab 2442  {crab 2811   cvv 3109  \cdif 3472
This theorem is referenced by:  dfif3  3955
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1618  ax-4 1631  ax-5 1704  ax-6 1747  ax-7 1790  ax-10 1837  ax-11 1842  ax-12 1854  ax-13 1999  ax-ext 2435
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-tru 1398  df-ex 1613  df-nf 1617  df-sb 1740  df-clab 2443  df-cleq 2449  df-clel 2452  df-nfc 2607  df-rab 2816  df-v 3111  df-dif 3478
  Copyright terms: Public domain W3C validator