![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
Mirrors > Home > MPE Home > Th. List > notnotrd | Unicode version |
Description: Deduction converting
double-negation into the original wff, aka the
double negation rule. A translation of natural deduction rule -. -.
-C, |- -. -. => |- ; see natded 25124. This is
definition NNC in [Pfenning] p. 17.
This rule is valid in classical
logic (which MPE uses), but not intuitionistic logic. (Contributed by
DAW, 8-Feb-2017.) |
Ref | Expression |
---|---|
notnotrd.1 |
Ref | Expression |
---|---|
notnotrd |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | notnotrd.1 | . 2 | |
2 | notnot2 112 | . 2 | |
3 | 1, 2 | syl 16 | 1 |
Colors of variables: wff setvar class |
Syntax hints: -. wn 3 -> wi 4 |
This theorem is referenced by: condan 794 efald 1417 necon1ai 2688 supgtoreq 7949 konigthlem 8964 indpi 9306 sqrmo 13085 ncoltgdim2 23952 ex-natded5.13 25136 2sqcoprm 27635 iccdifprioo 31556 icccncfext 31690 stirlinglem5 31860 bnj1204 34068 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
Copyright terms: Public domain | W3C validator |