MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  notrab Unicode version

Theorem notrab 3774
Description: Complementation of restricted class abstractions. (Contributed by Mario Carneiro, 3-Sep-2015.)
Assertion
Ref Expression
notrab
Distinct variable group:   ,

Proof of Theorem notrab
StepHypRef Expression
1 difab 3766 . 2
2 difin 3734 . . 3
3 dfrab3 3772 . . . 4
43difeq2i 3618 . . 3
5 abid2 2597 . . . 4
65difeq1i 3617 . . 3
72, 4, 63eqtr4i 2496 . 2
8 df-rab 2816 . 2
91, 7, 83eqtr4i 2496 1
Colors of variables: wff setvar class
Syntax hints:  -.wn 3  /\wa 369  =wceq 1395  e.wcel 1818  {cab 2442  {crab 2811  \cdif 3472  i^icin 3474
This theorem is referenced by:  rlimrege0  13402  ordtcld1  19698  ordtcld2  19699  lhop1lem  22414  rpvmasumlem  23672  hasheuni  28091  braew  28214
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1618  ax-4 1631  ax-5 1704  ax-6 1747  ax-7 1790  ax-10 1837  ax-11 1842  ax-12 1854  ax-13 1999  ax-ext 2435
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-tru 1398  df-ex 1613  df-nf 1617  df-sb 1740  df-clab 2443  df-cleq 2449  df-clel 2452  df-nfc 2607  df-ral 2812  df-rab 2816  df-v 3111  df-dif 3478  df-in 3482
  Copyright terms: Public domain W3C validator