![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
Mirrors > Home > MPE Home > Th. List > nqereq | Unicode version |
Description: The function acts as a substitute for equivalence classes, and it satisfies the fundamental requirement for equivalence representatives: the representatives are equal iff the members are equivalent. (Contributed by Mario Carneiro, 6-May-2013.) (Revised by Mario Carneiro, 12-Aug-2015.) (New usage is discouraged.) |
Ref | Expression |
---|---|
nqereq |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nqercl 9330 | . . . . 5 | |
2 | 1 | 3ad2ant1 1017 | . . . 4 |
3 | nqercl 9330 | . . . . 5 | |
4 | 3 | 3ad2ant2 1018 | . . . 4 |
5 | enqer 9320 | . . . . . 6 | |
6 | 5 | a1i 11 | . . . . 5 |
7 | nqerrel 9331 | . . . . . . 7 | |
8 | 7 | 3ad2ant1 1017 | . . . . . 6 |
9 | simp3 998 | . . . . . 6 | |
10 | 6, 8, 9 | ertr3d 7348 | . . . . 5 |
11 | nqerrel 9331 | . . . . . 6 | |
12 | 11 | 3ad2ant2 1018 | . . . . 5 |
13 | 6, 10, 12 | ertrd 7346 | . . . 4 |
14 | enqeq 9333 | . . . 4 | |
15 | 2, 4, 13, 14 | syl3anc 1228 | . . 3 |
16 | 15 | 3expia 1198 | . 2 |
17 | 5 | a1i 11 | . . . 4 |
18 | 7 | adantr 465 | . . . . 5 |
19 | simprr 757 | . . . . 5 | |
20 | 18, 19 | breqtrd 4476 | . . . 4 |
21 | 11 | ad2antrl 727 | . . . 4 |
22 | 17, 20, 21 | ertr4d 7349 | . . 3 |
23 | 22 | expr 615 | . 2 |
24 | 16, 23 | impbid 191 | 1 |
Colors of variables: wff setvar class |
Syntax hints: -> wi 4 <-> wb 184
/\ wa 369 /\ w3a 973 = wceq 1395
e. wcel 1818 class class class wbr 4452
X. cxp 5002 ` cfv 5593 Er wer 7327
cnpi 9243 ceq 9250
cnq 9251
cerq 9253 |
This theorem is referenced by: adderpq 9355 mulerpq 9356 distrnq 9360 recmulnq 9363 ltexnq 9374 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1618 ax-4 1631 ax-5 1704 ax-6 1747 ax-7 1790 ax-8 1820 ax-9 1822 ax-10 1837 ax-11 1842 ax-12 1854 ax-13 1999 ax-ext 2435 ax-sep 4573 ax-nul 4581 ax-pow 4630 ax-pr 4691 ax-un 6592 |
This theorem depends on definitions: df-bi 185 df-or 370 df-an 371 df-3or 974 df-3an 975 df-tru 1398 df-ex 1613 df-nf 1617 df-sb 1740 df-eu 2286 df-mo 2287 df-clab 2443 df-cleq 2449 df-clel 2452 df-nfc 2607 df-ne 2654 df-ral 2812 df-rex 2813 df-reu 2814 df-rmo 2815 df-rab 2816 df-v 3111 df-sbc 3328 df-csb 3435 df-dif 3478 df-un 3480 df-in 3482 df-ss 3489 df-pss 3491 df-nul 3785 df-if 3942 df-pw 4014 df-sn 4030 df-pr 4032 df-tp 4034 df-op 4036 df-uni 4250 df-iun 4332 df-br 4453 df-opab 4511 df-mpt 4512 df-tr 4546 df-eprel 4796 df-id 4800 df-po 4805 df-so 4806 df-fr 4843 df-we 4845 df-ord 4886 df-on 4887 df-lim 4888 df-suc 4889 df-xp 5010 df-rel 5011 df-cnv 5012 df-co 5013 df-dm 5014 df-rn 5015 df-res 5016 df-ima 5017 df-iota 5556 df-fun 5595 df-fn 5596 df-f 5597 df-f1 5598 df-fo 5599 df-f1o 5600 df-fv 5601 df-ov 6299 df-oprab 6300 df-mpt2 6301 df-om 6701 df-1st 6800 df-2nd 6801 df-recs 7061 df-rdg 7095 df-1o 7149 df-oadd 7153 df-omul 7154 df-er 7330 df-ni 9271 df-mi 9273 df-lti 9274 df-enq 9310 df-nq 9311 df-erq 9312 df-1nq 9315 |
Copyright terms: Public domain | W3C validator |