![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
Mirrors > Home > MPE Home > Th. List > nrexdv | Unicode version |
Description: Deduction adding restricted existential quantifier to negated wff. (Contributed by NM, 16-Oct-2003.) (Proof shortened by Wolf Lammen, 5-Jan-2020.) |
Ref | Expression |
---|---|
nrexdv.1 |
Ref | Expression |
---|---|
nrexdv |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nrexdv.1 | . . 3 | |
2 | 1 | ralrimiva 2871 | . 2 |
3 | ralnex 2903 | . 2 | |
4 | 2, 3 | sylib 196 | 1 |
Colors of variables: wff setvar class |
Syntax hints: -. wn 3 -> wi 4
/\ wa 369 e. wcel 1818 A. wral 2807
E. wrex 2808 |
This theorem is referenced by: class2set 4619 otiunsndisj 4758 peano5 6723 onnseq 7034 oalimcl 7228 omlimcl 7246 oeeulem 7269 nneob 7320 wemappo 7995 setind 8186 cardlim 8374 cardaleph 8491 cflim2 8664 fin23lem38 8750 isf32lem5 8758 winainflem 9092 winalim2 9095 supmul1 10533 ixxub 11579 ixxlb 11580 supicclub2 11700 rlimuni 13373 rlimcld2 13401 rlimno1 13476 harmonic 13670 eirr 13938 ruclem12 13974 dvdsle 14031 prmreclem5 14438 prmreclem6 14439 vdwnnlem3 14515 frgpnabllem1 16877 ablfacrplem 17116 lbsextlem3 17806 lmmo 19881 fbasfip 20369 hauspwpwf1 20488 alexsublem 20544 tsmsfbas 20626 iccntr 21326 reconnlem2 21332 evth 21459 bcthlem5 21767 minveclem3b 21843 itg2seq 22149 dvferm1 22386 dvferm2 22388 aaliou3lem9 22746 taylthlem2 22769 vma1 23440 pntlem3 23794 ostth2lem1 23803 tglowdim1i 23892 2spotiundisj 25062 2spot0 25064 ordtconlem1 27906 ballotlemimin 28444 poseq 29333 nocvxminlem 29450 supaddc 30041 tailfb 30195 fdc 30238 heibor1lem 30305 heiborlem8 30314 cmpfiiin 30629 limcrecl 31635 dirkercncflem2 31886 fourierdlem20 31909 fourierdlem42 31931 fourierdlem46 31935 fourierdlem63 31952 fourierdlem64 31953 fourierdlem65 31954 otiunsndisjX 32301 atlatmstc 35044 pmap0 35489 hdmap14lem4a 37601 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1618 ax-4 1631 ax-5 1704 |
This theorem depends on definitions: df-bi 185 df-an 371 df-ex 1613 df-ral 2812 df-rex 2813 |
Copyright terms: Public domain | W3C validator |