![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
Mirrors > Home > MPE Home > Th. List > ntrivcvgfvn0 | Unicode version |
Description: Any value of a product sequence that converges to a non-zero value is itself non-zero. (Contributed by Scott Fenton, 20-Dec-2017.) |
Ref | Expression |
---|---|
ntrivcvgfvn0.1 | |
ntrivcvgfvn0.2 | |
ntrivcvgfvn0.3 | |
ntrivcvgfvn0.4 | |
ntrivcvgfvn0.5 |
Ref | Expression |
---|---|
ntrivcvgfvn0 |
M
,N
,Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ntrivcvgfvn0.4 | . 2 | |
2 | fclim 13376 | . . . . . . . 8 | |
3 | ffun 5738 | . . . . . . . 8 | |
4 | 2, 3 | ax-mp 5 | . . . . . . 7 |
5 | ntrivcvgfvn0.3 | . . . . . . 7 | |
6 | funbrfv 5911 | . . . . . . 7 | |
7 | 4, 5, 6 | mpsyl 63 | . . . . . 6 |
8 | 7 | adantr 465 | . . . . 5 |
9 | eqid 2457 | . . . . . . 7 | |
10 | ntrivcvgfvn0.1 | . . . . . . . . . 10 | |
11 | uzssz 11129 | . . . . . . . . . 10 | |
12 | 10, 11 | eqsstri 3533 | . . . . . . . . 9 |
13 | ntrivcvgfvn0.2 | . . . . . . . . 9 | |
14 | 12, 13 | sseldi 3501 | . . . . . . . 8 |
15 | 14 | adantr 465 | . . . . . . 7 |
16 | seqex 12109 | . . . . . . . 8 | |
17 | 16 | a1i 11 | . . . . . . 7 |
18 | 0cnd 9610 | . . . . . . 7 | |
19 | fveq2 5871 | . . . . . . . . . . 11 | |
20 | 19 | eqeq1d 2459 | . . . . . . . . . 10 |
21 | 20 | imbi2d 316 | . . . . . . . . 9 |
22 | fveq2 5871 | . . . . . . . . . . 11 | |
23 | 22 | eqeq1d 2459 | . . . . . . . . . 10 |
24 | 23 | imbi2d 316 | . . . . . . . . 9 |
25 | fveq2 5871 | . . . . . . . . . . 11 | |
26 | 25 | eqeq1d 2459 | . . . . . . . . . 10 |
27 | 26 | imbi2d 316 | . . . . . . . . 9 |
28 | fveq2 5871 | . . . . . . . . . . 11 | |
29 | 28 | eqeq1d 2459 | . . . . . . . . . 10 |
30 | 29 | imbi2d 316 | . . . . . . . . 9 |
31 | simpr 461 | . . . . . . . . . 10 | |
32 | 31 | a1i 11 | . . . . . . . . 9 |
33 | 13, 10 | syl6eleq 2555 | . . . . . . . . . . . . . . . 16 |
34 | uztrn 11126 | . . . . . . . . . . . . . . . 16 | |
35 | 33, 34 | sylan2 474 | . . . . . . . . . . . . . . 15 |
36 | 35 | 3adant3 1016 | . . . . . . . . . . . . . 14 |
37 | seqp1 12122 | . . . . . . . . . . . . . 14 | |
38 | 36, 37 | syl 16 | . . . . . . . . . . . . 13 |
39 | oveq1 6303 | . . . . . . . . . . . . . 14 | |
40 | 39 | 3ad2ant3 1019 | . . . . . . . . . . . . 13 |
41 | peano2uz 11163 | . . . . . . . . . . . . . . . . . 18 | |
42 | 10 | uztrn2 11127 | . . . . . . . . . . . . . . . . . 18 |
43 | 13, 41, 42 | syl2an 477 | . . . . . . . . . . . . . . . . 17 |
44 | ntrivcvgfvn0.5 | . . . . . . . . . . . . . . . . . . 19 | |
45 | 44 | ralrimiva 2871 | . . . . . . . . . . . . . . . . . 18 |
46 | fveq2 5871 | . . . . . . . . . . . . . . . . . . . 20 | |
47 | 46 | eleq1d 2526 | . . . . . . . . . . . . . . . . . . 19 |
48 | 47 | rspcv 3206 | . . . . . . . . . . . . . . . . . 18 |
49 | 45, 48 | mpan9 469 | . . . . . . . . . . . . . . . . 17 |
50 | 43, 49 | syldan 470 | . . . . . . . . . . . . . . . 16 |
51 | 50 | ancoms 453 | . . . . . . . . . . . . . . 15 |
52 | 51 | mul02d 9799 | . . . . . . . . . . . . . 14 |
53 | 52 | 3adant3 1016 | . . . . . . . . . . . . 13 |
54 | 38, 40, 53 | 3eqtrd 2502 | . . . . . . . . . . . 12 |
55 | 54 | 3exp 1195 | . . . . . . . . . . 11 |
56 | 55 | adantrd 468 | . . . . . . . . . 10 |
57 | 56 | a2d 26 | . . . . . . . . 9 |
58 | 21, 24, 27, 30, 32, 57 | uzind4 11168 | . . . . . . . 8 |
59 | 58 | impcom 430 | . . . . . . 7 |
60 | 9, 15, 17, 18, 59 | climconst 13366 | . . . . . 6 |
61 | funbrfv 5911 | . . . . . 6 | |
62 | 4, 60, 61 | mpsyl 63 | . . . . 5 |
63 | 8, 62 | eqtr3d 2500 | . . . 4 |
64 | 63 | ex 434 | . . 3 |
65 | 64 | necon3d 2681 | . 2 |
66 | 1, 65 | mpd 15 | 1 |
Colors of variables: wff setvar class |
Syntax hints: -> wi 4 /\ wa 369
/\ w3a 973 = wceq 1395 e. wcel 1818
=/= wne 2652 A. wral 2807 cvv 3109
class class class wbr 4452 dom cdm 5004
Fun wfun 5587
--> wf 5589 ` cfv 5593 (class class class)co 6296
cc 9511 0 cc0 9513 1 c1 9514
caddc 9516 cmul 9518 cz 10889 cuz 11110
seq cseq 12107
cli 13307 |
This theorem is referenced by: ntrivcvgtail 13709 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1618 ax-4 1631 ax-5 1704 ax-6 1747 ax-7 1790 ax-8 1820 ax-9 1822 ax-10 1837 ax-11 1842 ax-12 1854 ax-13 1999 ax-ext 2435 ax-rep 4563 ax-sep 4573 ax-nul 4581 ax-pow 4630 ax-pr 4691 ax-un 6592 ax-inf2 8079 ax-cnex 9569 ax-resscn 9570 ax-1cn 9571 ax-icn 9572 ax-addcl 9573 ax-addrcl 9574 ax-mulcl 9575 ax-mulrcl 9576 ax-mulcom 9577 ax-addass 9578 ax-mulass 9579 ax-distr 9580 ax-i2m1 9581 ax-1ne0 9582 ax-1rid 9583 ax-rnegex 9584 ax-rrecex 9585 ax-cnre 9586 ax-pre-lttri 9587 ax-pre-lttrn 9588 ax-pre-ltadd 9589 ax-pre-mulgt0 9590 ax-pre-sup 9591 |
This theorem depends on definitions: df-bi 185 df-or 370 df-an 371 df-3or 974 df-3an 975 df-tru 1398 df-ex 1613 df-nf 1617 df-sb 1740 df-eu 2286 df-mo 2287 df-clab 2443 df-cleq 2449 df-clel 2452 df-nfc 2607 df-ne 2654 df-nel 2655 df-ral 2812 df-rex 2813 df-reu 2814 df-rmo 2815 df-rab 2816 df-v 3111 df-sbc 3328 df-csb 3435 df-dif 3478 df-un 3480 df-in 3482 df-ss 3489 df-pss 3491 df-nul 3785 df-if 3942 df-pw 4014 df-sn 4030 df-pr 4032 df-tp 4034 df-op 4036 df-uni 4250 df-iun 4332 df-br 4453 df-opab 4511 df-mpt 4512 df-tr 4546 df-eprel 4796 df-id 4800 df-po 4805 df-so 4806 df-fr 4843 df-we 4845 df-ord 4886 df-on 4887 df-lim 4888 df-suc 4889 df-xp 5010 df-rel 5011 df-cnv 5012 df-co 5013 df-dm 5014 df-rn 5015 df-res 5016 df-ima 5017 df-iota 5556 df-fun 5595 df-fn 5596 df-f 5597 df-f1 5598 df-fo 5599 df-f1o 5600 df-fv 5601 df-riota 6257 df-ov 6299 df-oprab 6300 df-mpt2 6301 df-om 6701 df-2nd 6801 df-recs 7061 df-rdg 7095 df-er 7330 df-en 7537 df-dom 7538 df-sdom 7539 df-sup 7921 df-pnf 9651 df-mnf 9652 df-xr 9653 df-ltxr 9654 df-le 9655 df-sub 9830 df-neg 9831 df-div 10232 df-nn 10562 df-2 10619 df-3 10620 df-n0 10821 df-z 10890 df-uz 11111 df-rp 11250 df-seq 12108 df-exp 12167 df-cj 12932 df-re 12933 df-im 12934 df-sqrt 13068 df-abs 13069 df-clim 13311 |
Copyright terms: Public domain | W3C validator |