![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
Mirrors > Home > MPE Home > Th. List > oawordri | Unicode version |
Description: Weak ordering property of ordinal addition. Proposition 8.7 of [TakeutiZaring] p. 59. (Contributed by NM, 7-Dec-2004.) |
Ref | Expression |
---|---|
oawordri |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | oveq2 6304 | . . . . . 6 | |
2 | oveq2 6304 | . . . . . 6 | |
3 | 1, 2 | sseq12d 3532 | . . . . 5 |
4 | oveq2 6304 | . . . . . 6 | |
5 | oveq2 6304 | . . . . . 6 | |
6 | 4, 5 | sseq12d 3532 | . . . . 5 |
7 | oveq2 6304 | . . . . . 6 | |
8 | oveq2 6304 | . . . . . 6 | |
9 | 7, 8 | sseq12d 3532 | . . . . 5 |
10 | oveq2 6304 | . . . . . 6 | |
11 | oveq2 6304 | . . . . . 6 | |
12 | 10, 11 | sseq12d 3532 | . . . . 5 |
13 | oa0 7185 | . . . . . . . 8 | |
14 | 13 | adantr 465 | . . . . . . 7 |
15 | oa0 7185 | . . . . . . . 8 | |
16 | 15 | adantl 466 | . . . . . . 7 |
17 | 14, 16 | sseq12d 3532 | . . . . . 6 |
18 | 17 | biimpar 485 | . . . . 5 |
19 | oacl 7204 | . . . . . . . . . . . 12 | |
20 | eloni 4893 | . . . . . . . . . . . 12 | |
21 | 19, 20 | syl 16 | . . . . . . . . . . 11 |
22 | oacl 7204 | . . . . . . . . . . . 12 | |
23 | eloni 4893 | . . . . . . . . . . . 12 | |
24 | 22, 23 | syl 16 | . . . . . . . . . . 11 |
25 | ordsucsssuc 6658 | . . . . . . . . . . 11 | |
26 | 21, 24, 25 | syl2an 477 | . . . . . . . . . 10 |
27 | 26 | anandirs 831 | . . . . . . . . 9 |
28 | oasuc 7193 | . . . . . . . . . . 11 | |
29 | 28 | adantlr 714 | . . . . . . . . . 10 |
30 | oasuc 7193 | . . . . . . . . . . 11 | |
31 | 30 | adantll 713 | . . . . . . . . . 10 |
32 | 29, 31 | sseq12d 3532 | . . . . . . . . 9 |
33 | 27, 32 | bitr4d 256 | . . . . . . . 8 |
34 | 33 | biimpd 207 | . . . . . . 7 |
35 | 34 | expcom 435 | . . . . . 6 |
36 | 35 | adantrd 468 | . . . . 5 |
37 | vex 3112 | . . . . . . . 8 | |
38 | ss2iun 4346 | . . . . . . . . 9 | |
39 | oalim 7201 | . . . . . . . . . . 11 | |
40 | 39 | adantlr 714 | . . . . . . . . . 10 |
41 | oalim 7201 | . . . . . . . . . . 11 | |
42 | 41 | adantll 713 | . . . . . . . . . 10 |
43 | 40, 42 | sseq12d 3532 | . . . . . . . . 9 |
44 | 38, 43 | syl5ibr 221 | . . . . . . . 8 |
45 | 37, 44 | mpanr1 683 | . . . . . . 7 |
46 | 45 | expcom 435 | . . . . . 6 |
47 | 46 | adantrd 468 | . . . . 5 |
48 | 3, 6, 9, 12, 18, 36, 47 | tfinds3 6699 | . . . 4 |
49 | 48 | exp4c 608 | . . 3 |
50 | 49 | com3l 81 | . 2 |
51 | 50 | 3imp 1190 | 1 |
Colors of variables: wff setvar class |
Syntax hints: -> wi 4 <-> wb 184
/\ wa 369 /\ w3a 973 = wceq 1395
e. wcel 1818 A. wral 2807 cvv 3109
C_ wss 3475 c0 3784 U_ ciun 4330 Ord word 4882
con0 4883 Lim wlim 4884 suc csuc 4885
(class class class)co 6296 coa 7146 |
This theorem is referenced by: oaword2 7221 omwordri 7240 oaabs2 7313 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1618 ax-4 1631 ax-5 1704 ax-6 1747 ax-7 1790 ax-8 1820 ax-9 1822 ax-10 1837 ax-11 1842 ax-12 1854 ax-13 1999 ax-ext 2435 ax-rep 4563 ax-sep 4573 ax-nul 4581 ax-pow 4630 ax-pr 4691 ax-un 6592 |
This theorem depends on definitions: df-bi 185 df-or 370 df-an 371 df-3or 974 df-3an 975 df-tru 1398 df-ex 1613 df-nf 1617 df-sb 1740 df-eu 2286 df-mo 2287 df-clab 2443 df-cleq 2449 df-clel 2452 df-nfc 2607 df-ne 2654 df-ral 2812 df-rex 2813 df-reu 2814 df-rab 2816 df-v 3111 df-sbc 3328 df-csb 3435 df-dif 3478 df-un 3480 df-in 3482 df-ss 3489 df-pss 3491 df-nul 3785 df-if 3942 df-pw 4014 df-sn 4030 df-pr 4032 df-tp 4034 df-op 4036 df-uni 4250 df-iun 4332 df-br 4453 df-opab 4511 df-mpt 4512 df-tr 4546 df-eprel 4796 df-id 4800 df-po 4805 df-so 4806 df-fr 4843 df-we 4845 df-ord 4886 df-on 4887 df-lim 4888 df-suc 4889 df-xp 5010 df-rel 5011 df-cnv 5012 df-co 5013 df-dm 5014 df-rn 5015 df-res 5016 df-ima 5017 df-iota 5556 df-fun 5595 df-fn 5596 df-f 5597 df-f1 5598 df-fo 5599 df-f1o 5600 df-fv 5601 df-ov 6299 df-oprab 6300 df-mpt2 6301 df-om 6701 df-recs 7061 df-rdg 7095 df-oadd 7153 |
Copyright terms: Public domain | W3C validator |